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The equation of motion method for the Green functions is one of the tools used in the analysis of quantum dot
system coupled with the metallic and superconducting leads. We investigate modified equation of motion, based on
differentiation of double-time temperature dependent Green functions both over the primary time t and secondary
time t′. Our equation of motion approach allows us to obtain the Abrikosov–Suhl resonance in the particle–hole
symmetric case and also in the asymmetric cases. We will apply the irreducible Green functions technique to
analyses of the equation of motion applied to the dot system. This method gives a workable decoupling scheme
breaking the infinite set of the Green function equations. We apply this technique to calculate the density of the
states and the differential conductance of single-level quantum dot with the Coulomb repulsion attached to one
metallic and one superconducting leads (N–QD–SC). Our results are compared with the previous calculations.
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1. Introduction

Electronic transport through the quantum dots is a
very interesting effect which at present is investigated
experimentally and theoretically. One of the important
examples is the system in which the quantum dot is cou-
pled with one metallic and one superconducting leads (N–
QD–SC). In this system there is an interplay between the
Andreev refraction and the Kondo effect. Transition be-
tween those two effects depends strongly on the Coulomb
interaction. For the weak interaction we observe super-
conducting singlet state with two Andreev resonances in
the spectral density. At large Coulomb interaction the
Kondo singlet is preferred in the spectral density and
the Andreev resonances overlap and become the central
Kondo peak. The competition between these two singlet
states can be investigated by the linear conductance mea-
surements. In the crossover region the zero bias conduc-
tance [1] has the maximum. In the Kondo effect region
the conductance decreases.

Different methods are used for theoretical analysis of
the Coulomb correlation in N–QD–SC system: numer-
ical renormalization group (NRG) [1], modified pertur-
bation theory (MPT) [2–4], equation of motion (EOM)
approach [5, 6]. The weak point of standard EOM ap-
proach is that it does not describe the Kondo state in the
particle–hole symmetric case. We use modified (EOM)
approach [7] in which we differentiate Green functions
over both time variables. This differs from the standard
EOM method where the time derivative was taken only
over primary time variable. Such an approach allows to
describe correctly the Kondo state in particle–hole sym-
metric case but also in the asymmetric case. Using this
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method we calculated the spectral density of states and
the linear conductance of the N–QD–SC system. The re-
sults are compared with the results of NRG method [1, 8].

2. The model

We analyze the system that is built out of quantum dot
connected to one metallic lead and one superconducting
lead. Hamiltonian of this model has the form

H =
∑
σ

εdndσ + Und↑nd↓ +
∑

kσ;α=N,S

(εkα − µα)nkασ

+
∑

kσ;α=N,S

(
Vkαd

+
σ ckασ + H.c.

)
−∆

∑
k

(
c+kS↑c

+
−kS↓ + c−kS↓ckS↑

)
, (1)

where d+σ (dσ) are the creation (annihilation) operators
for the dot electron with spin σ, c+kασ (ckασ) where
α = N,S are the creation (annihilation) operators for the
electron in the normal (N) or superconducting (S) lead,
εkα is the energy dispersion of α lead, µα is the chemical
potential of α lead, εd is the dot energy, U is the on-site
Coulomb interaction between electrons on the dot, and
Vkα is the coupling between the α lead and the dot. We
assume that the superconducting lead is well described
by the BCS theory with a superconducting gap ∆.

We are interested in the physics of the Andreev reflec-
tion therefore for simplicity we will assume that ∆→∞.
As a result, Eq. (1) is reduced to the following effective
Hamiltonian [9]:

H =
∑
σ

εdndσ + Und↑nd↓ +
∑
kσ

(εkN − µN )nkNσ

+
∑
kσ

(
VkNd

+
σ ckNσ + H.c.

)
−∆d

(
d+↑ d

+
↓ + d−↓d↑

)
, (2)

where ∆d = ΓS denotes the effective onsite super-
conducting gap at the QD. The parameter ΓS =
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π
∑

k |VkS |
2
δ (ε− εkS) describe the resonance strength

between the QD and the superconducting lead. In the
broad band limit we assume that it is a constant value.

We are searching for the Green function in the Nambu
space. In the energy representation we can write it as

Ĝd(ε) =

[
〈〈d↑; d+↑ 〉〉ε 〈〈d↑; d↓〉〉ε
〈〈d+↓ ; d+↑ 〉〉ε 〈〈d

+
↓ ; d↓〉〉ε

]
. (3)

In our analysis we will use the equation of motion tech-
nique for the double-time Green functions. In general the
EOM for the Green functions is obtained by differentia-
tion over primary time (t), which after Fourier transform
brings the following equation:

ε〈〈A;B〉〉ε = 〈 [A,B]+〉+ 〈〈 [A,H]−;B〉〉ε. (4)
In this form Eq. (4) is widely used in analysis of
nanoscopic systems (see e.g. [5, 10]). It allowed for ob-
taining the Abrikosov–Suhl resonance, but only outside
of the particle–hole symmetric system. For nd = 1 in
this approach the Abrikosov–Suhl peak disappear. Less
frequently used method in solving the EOM is differen-
tiating the double-time Green function over the second
time (t′). In the energy representation this leads to the
following equation [7]:
−ε〈〈A;B〉〉ε = −〈 [A,B]+〉+ 〈〈A; [B,H]−〉〉ε. (5)

In our approach we will use both forms of equation of
motion. To analyze the higher order Green functions
(〈〈 [A,H]−;B〉〉ε and 〈〈A; [B,H]−〉〉ε) we will apply the
irreducible Green functions technique [11]. By the help
of Eqs. (4) and (5) we obtain

ĝHF−1
d Ĝd = Î + U2τ̂ ir3 Γ̂

(2)ir
d τ̂3ĝ

HF
d , (6)

where τ̂i is the Pauli matrix, ĝHF
d is the QD Hartree–Fock

Green function in the Nambu space
ĝHF−1
d =[

ε− εd + iΓN − U〈nd↓〉 ∆d − U〈d↓d↑〉
∆d − U〈d+↑ d

+
↓ 〉 ε+ εd − iΓN + U〈nd↑〉

]
, (7)

the expression irΓ̂
(2)ir
d is irreducible Green functions

irΓ̂
(2)ir
d =[

ir〈〈n̂d↓d↑;nd↓d+↑ 〉〉irε ir〈〈n̂d↓d↑; n̂d↑d↓〉〉irε
ir〈〈n̂d↑d+↓ ;nd↓d

+
↑ 〉〉irε ir〈〈n̂d↑d+↓ ; n̂d↑d↓〉〉irε

]
, (8)

and ΓN = π
∑

k |VkN |
2
δ (ε− εkN ) represents the reso-

nance strength between the QD and the metallic lead.
Using the Dyson relations and dividing the self-energy:
Σ̂U = Σ̂HF

U + Σ̂ ′U , into the first order term Σ̂HF
U and the

remaining higher order part (Σ̂ ′U ) we obtain

Σ̂HF
U =

[
U〈nd↓〉 U〈d↓d↑〉
U〈d+↑ d

+
↓ 〉 −U〈nd↑〉

]
(9)

and

Σ̂ ′U =
[
Î + U2τ̂ ir3 Γ̂

(2)ir
d τ̂3ĝ

HF
d

]−1
U2τ̂ ir3 Γ̂

(2)ir
d τ̂3. (10)

The irreducible Green functions irΓ̂
(2)ir
d defined by

Eq. (8) cannot be reduced to the lower order Green func-

tion by any kind of decoupling. Using spectral theorem
we obtain the approximate expression for irΓ̂ (2)ir

d :

irΓ̂
(2)ir
d (ε) = − 1

π

∫ ∞
−∞

dε′

ε− ε′ + i0+
ImX̂(ε′), (11)

where

ImX̂(ε) = −
∫ ∞
−∞

[
Π1(ε+ ε′)τ̂2

[
ρ̂+HF (ε′)

]T
τ̂2

+Π2(ε+ ε′)τ̂2
[
ρ̂−HF (ε′)

]T
τ̂2

]
dε′, (12)

Π1(2)(ε) = π

∫ ∞
−∞

[
ρ
−(+)
HF11(ε′)ρ

−(+)
HF22(ε− ε′)

−ρ−(+)
HF12(ε′)ρ

−(+)
HF21(ε− ε′)

]
dε′. (13)

In Eqs. (12) and (13) we have introduced the state den-
sities: ρ±ij(ε) = −1/πImg0d,ij(ε)f

±(ε), where f±(ε) =

[1 + exp (±ε/T )]
−1 is the particle/hole distribution func-

tions. To calculate functions g0d,ij(ε) we used effective
dot energy level and effective local pairing potential de-
termined in a self-consistent manner [2].

Similar form of the self-energy for N–QD–SC system
was used by Martin-Rodero et al. [3, 4], and Yamada et
al. [2], but in their papers the denominator of the self-
energy was introduced by interpolation to the results of
the weak and strong coupling limits. In our approach
denominator in Eq. (10) is derived directly from the cor-
rected twice EOM method.

3. Numerical results and discussion

In the numerical analysis we will concentrate on the
equilibrium system where µS = µN = 0. The unit of en-
ergy is the coupling parameter between dot and metal-
lic lead ΓN = 1. In Fig. 1a we present the energy de-
pendence of the correlated quantum dot spectral den-
sity, ρd(ε) = −ImG11(ε)/π, for different values of the
Coulomb interaction in the particle–hole symmetric cou-
pling case. At small values of the Coulomb interaction
we obtain two pronounced Andreev quasiparticle peaks.
This situation points to the existence of the supercon-
ducting singlet state. Increase of the Coulomb interaction
favors Kondo effect and as the result we observe crossover
between Copper-pairing singlet state and the Kondo sin-
glet state. In the spectral density it causes renormal-
ization of the Andreev levels and their approach to the
Fermi level. Finally, both states become one resonance
state typical for the Kondo effect. In addition to this
dominant resonance there are four other resonances rep-
resenting the electron and hole components of the excita-
tions to the upper and lower atomic levels [6, 8]. These re-
sults are comparable with the numerical results obtained
by the renormalization group (NRG) method [8].

In Fig. 1b we show the anomalous spectral density
ρoff (ε) = −ImG21(ε)/π for different values of U . With
the increase of U value of ρoff (ε) decreases. Further
increase of U leads to the sign change of ρoff (ε). At
U < 10 and ε > 0 we have negative ρoff (ε). At U > 10
we obtain positive ρoff (ε) at some energies. Six extreme
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Fig. 1. 1 (a) Spectral density ρd(ε) of correlated quan-
tum dot plotted as a function of energy for different
values of the Coulomb interaction, ΓN = 1, ΓS = 5 and
particle–hole symmetric case. (b) Anomalous spectral
density ρoff (ε) of correlated quantum dot.

points in the dependence of ρoff (ε) (seen particularly
well at large U > 10) correspond to the resonance lev-
els in the spectral density, where two states close to the
Fermi energy merge into one Kondo peak [8]. Sign change
in the anomalous spectral density is the criterion of the
transition from the superconducting singlet-Kondo state
to the single (doublet) state [12]. In crossover region the
anomalous spectral density disappears but the spectral
density ρd(ε) rapidly grows (see Fig. 1a). Similar be-
havior of ρd(ε) and ρoff (ε) near the transition point was
observed by Zitko et al. [12] in the systems with finite
superconducting energy gap.

Fig. 2. Andreev linear conductance as a function of the
Coulomb interaction U for ΓN = 1 and ΓS = 5 calcu-
lated in our approach (solid line) and from NRG method
(dashed line) [1].

In Fig. 2 we show Andreev linear conductance as a
function of the Coulomb interaction for ΓN = 1 and
ΓS = 5. In calculations we have used expression derived
by Barański and Domański [6]. At small U < 10 we
observe increase of the Andreev linear conductance with
the increase of U . In the crossover region (U = 10) the
linear conductance reaches its maximum value of 4e2/h.
Further increase of U causes transition to the Kondo
physics and as the result GA decreases. For comparison
we present also the results from numerical renormaliza-
tion group method [1]. One can see that there is good
agreement between those results.

Reassuming the method of modified EOM applied to
N–QD–SC system allows to analyze mutual interplay be-
tween the proximity induced pairing and the Kondo-type
correlations. Results obtained for DOS and for the An-
dreev linear conductance are in agreement with the other
numerical methods. Our method based on the analytical
approach describes well transition from superconducting
to singlet-Kondo state in the broad range of the Coulomb
correlations.
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