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A Bias Reducing Approach for Some Robust Estimators
by Predicting Roughness in Case of Kernel Estimation
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In the density estimation it is known that estimators are heavily biased. We applied a bias reducing approach
to improve some quantile estimators for Weibull distribution having different parameter values and contamination
level. In this study, we estimate the bias for any quantile value and obtained biased reduced smoothed distribu-
tion function by simulation study for random samples of size 40. Then, the mean square error of some robust
quantile estimators and variances are obtained from biased reduced smoothed distribution function. Furthermore,
we obtained sampling distribution of roughness and sampling distribution of estimated bias related some quantile
estimators.
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1. Introduction
In this study, some quantile-based robust estimators

are investigated for the Weibull distribution. When data
is contaminated, the estimators are affected strongly in
the negative manner. So, it is important to use robust
estimators as a measure of distribution properties for an-
alyzing data in the case of contamination with outliers.
The first proposals about kernel smoothing for distribu-
tion functions estimates has been made by Nadaraya [1]
and Azzalini [2]. After that, smoothing empirical distri-
bution function by kernel estimation and obtaining es-
timators based on smoothed distribution is frequently
applied.

Generally, for small data sets and in the case of out-
lier, Fernholz [3] has proven that the mean square er-
ror (MSE) of the estimators obtained from the smoothed
distribution function is less than the MSE of estimators
obtained from the empirical distribution function. Hu-
bert et al. [4], stated the results of a simulation study
conducted for the kernel smoothing to random samples
that are taken from a gamma distribution with various
parameters including the cases of contamination. It is
declared that a great reduction is achieved in the MSE
of smoothed quantile-based estimators depending on a
simulation study applied for Weibull distribution with
different parameter value [5].

Furthermore, when kernel estimation is obtained in or-
der to achieve smoothness, it is known that the estima-
tors are heavily biased. For that reason, it is necessary
to improve the estimators by using a bias reducing ap-
proach. In this study, we applied a bias reduction ap-
proach to some quantile estimator for Weibull distribu-
tion having different parameter values and contamination
level.

For this purpose, first we obtained kernel smoothed
distribution function, than we estimate the bias for any

∗corresponding author; e-mail: ngunduz@gazi.edu.tr

quantile value, after that we obtained biased reduced
smoothed distribution function by simulation study for
random samples of size 40. And then the MSE of ro-
bust estimators and variances are obtained from biased
reduced smoothed distribution function.

As a quantile-based robust statistics, the median
(med), interquartile range (IQR), quartile skewness (QS)
and octile skewness (OS) are considered. In the case of
contamination with different proportion, the behavior of
mentioned statistics is investigated by a simulation study
and results are summarized.

In the second section of the study we introduce ba-
sic concepts and definitions such as quantile function
and some robust quantile estimators. Kernel smoothing
and estimation of the roughness and bandwidth selection
which are crucial parameters in kernel smoothing are pro-
vided in Section 3. Simulation study takes place in the
Section 4. Results of simulation study are summarized
and tabulated in Section 5. In Section 6 theory is ap-
plied to lifetimes of transplanted kidneys data. Finally,
conclusion stated in the last section.

2. Basic concepts

Let {x1, x2, ..., xn} be an independent and identically
distributed random sample, with sample size n, drawn
from an absolutely continuous distribution function F (x)
with probability density function f (x). The population
quantile function is defined as the first place that the
value of distribution function is at least p and is given as
follows:

Q (p) = inf {x : p ≤ F (x)} , 0 ≤ p ≤ 1. (1)
Empirical distribution function is

Fn (x) = F̂ (x) =
1

n

n∑
i=1

I(−∞, x] (xi) , (2)

I(−∞,x] (u) =

{
1, u ∈ (−∞, x] , u ≤ x
0, u /∈ (−∞, x] , u > x

.

(422)
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Accordingly, empirical quantile function is
Qn (p) = inf {x : p ≤ Fn (x)} , 0 ≤ p ≤ 1. (3)

As it is seen from the definition, the empirical quan-
tile function (estimator of quantile function) is inverse
of the empirical distribution function. In this study,
some robust quantile based estimators such as, me-
dian as a location estimator, interquartile range as a
scale estimator, quartile skewness and octile skewness
as a measure of skewness are investigated for Weibull
distribution [4, 6, 7].

3. Kernel smoothing

An empirical distribution function estimates the distri-
bution function of a random variable by assigning equal
probability to each observation in a sample. It is dis-
continuous at many points. Kernel smoothing is applied
to achieve a smoother empirical distribution function so
we have a continuous estimate of distribution function,
which makes possible to estimate the density of a random
variable based on an observed sample. Kernel-based es-
timator of distribution function is given as follows [1]

F̃n,h (x) =
1

n

n∑
i=1

K

(
x−Xi

h

)
, (4)

where K (t) is distribution function, having a density
k (t) that is symmetric around zero and a bandwidth
h that controls the degree of smoothness. Since the
choice of kernel function K (t) is less important than the
choice of bandwidth, we took under consideration only
Epanechnikov kernel [8, 9]. Smoothed distribution func-
tion, F̃n,h (x), is continuous, so for any p, 0 ≤ p ≤ 1, it
is possible to obtain a smoothed quantile estimate. In
practice, the range of the smoothed distribution func-
tion is equally partitioned to many sections; each section
matches a quantile value, so we have a smoothed quantile
estimate for each section in one-to-one correspondence.
We use interpolation to obtain other quantile estimates.
If a random variable X has a distribution function F (x),
that is differentiable twice and has continuous second
derivative, while n→∞, h→ 0, nh→∞, the expected
value and the variance of the smoothed distribution func-
tion estimator F̃n,h (x) is given as follows

E
(
F̃n,h (x)

)
= F (x) +

1

2
h2f ′ (x)µ2 (k) + o

(
h2
)
, (5)

V
(
F̃n,h (x)

)
=
F (x) (1− F (x))

n

−2hf (x) c

n
+ o

(
h

n

)
, (6)

where µ2 (k) =
∞∫
−∞

t2k (t) dt and c =
∞∫
−∞

tk (t)K (t) dt.

For the Epanechnikov kernel we have µ2 (k) = 1, the
constant c is c = 0.2875 [2].

As it is seen in Eq. (5), smoothed distribution func-
tion estimator is biased. We look for a bias reducing
approach. The MSE of smoothed distribution function,

MSE
(
F̃n,h(x)

)
= E

[
F̃n,h (x)− FX (x)

]2
. (7)

Since we are interested in all quantile based estimator, it
is best to minimize IMSE:

IMSE(h) = IMSE
(
F̃n,h(x)

)
=

∞∫
−∞

Var
(
F̃n,h (x)

)
dx+

∞∫
−∞

[
Bias

(
F̃n,h (x)

)]2
dx,(

Bias
(
F̃n,h (x)

)
= E

(
F̃n,h (x)

)
− FX (x) =

1
2h

2f ′ (x)µ2 (k) + o
(
h2
))
.

By applying elementary integral operations
∞∫
−∞

Var
(
F̃n,h (x)

)
dx =

∞∫
−∞

[
F (x)(1−F (x))

n

]
dx+

∞∫
−∞

[
− 2hf(x)c

n

]
dx =

∞∫
−∞

[
F (x)(1−F (x))

n

]
dx− 2hc

n + o
(
h2
)
,

∞∫
−∞

[
Bias

(
F̃n,h (x)

)]2
dx =

∞∫
−∞

[
1
2h

2f ′ (x)µ2 (k)
]2
dx+ o

(
h
n

)
=

1
4h

4µ2
2 (k)

∞∫
−∞

(f ′ (x))
2
dx

︸ ︷︷ ︸
=Roughness=R

= 1
4h

4µ2
2 (k)R.

We obtain the IMSE as follows
IMSE (h) = IMSE

(
F̃n,h (h)

)
=

∞∫
−∞

[
F (x)(1−F (x))

n

]
dx− 2hc

n + 1
4h

4µ2
2 (k)R.

(8)

IMSE expression is a function of bandwidth. We are
looking for the minimum value of IMSE

∂IMSE (h)

∂h
= 0− 2c

n
+ h3µ2

2 (k)R = 0

⇒ h =

(
2c

nµ2
2 (k)R

)− 1
3

. (9)

We expect that this bandwidth would minimize the
IMSE. In this sense, it is optimum. We see that, optimal
bandwidth value depends on roughness R, so it must be
estimated.

4. Bias reducing in kernel estimation

By ordering the random sample we obtained order
statistics, than we found sample variance and inter quar-
tile range (IQR). We made first bandwidth prediction as
follows [10]

hfirst = 2.34min

(
σ̂n,

IQRn

1.349

)
n−

1
5 .

In the case of outliers, we know that sample variance
is strongly effected while IQR statistics is less affected.
Since breakdown point of IQR is 0.25. If there is an
outlier, the IQR statistics will define the first bandwidth
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otherwise sample variance will define it. Consequently,
first bandwidth selection will be close to optimum and
robust in any case. We use the predicted first bandwidth
value to predict roughness of the random sample. We
use the predicted bandwidth value to obtain the estima-
tor of the second derivative of density function by kernel
estimation

f̃ ′′n,h (x) =
1

nh3first

n∑
i=1

k′′
(
x−Xi

hfirst

)
.

We have the estimated roughness value for all points in
the range (related to this random sample). In order to
obtain

(
f̃ ′′n,h (x)

)
roughness estimates by kernel estima-

tion we need to define a working interval, which can be
based on the range of the random sample. We expand
the working interval by adding 2 times bandwidth length
to both sides

Upper working interval = x(min) + 2× hfirst,
Lower working interval = x(max) − 2× hfirst.

Since, for every point of the working interval, we want
to obtain kernel estimation we define step size and step
number to control the sensitivity of the results

Working interval length =

step size× step number.

When step size decreases, step number increases and vice
versa. So it is possible to establish a control. We con-
struct a coordinate grid on working interval by step size
and step number. So we estimate f̃ ′′n,h (x) values for many
points, according to step size and step number value.
We defined the points of the working interval in which
kernel estimation is applied for every in the following
manner

x = working interval lower bound+ step size× k,

k = 1, 2, 3, ...,

f̃ ′′n,h (x) =
1

nh3

[
k′′
(
x−X1

hfirst

)
+ k′′

(
x−X2

hfirst

)
+ ...

+k′′
(
x−Xn

hfirst

)]
,

f̃ ′′n,h (x+ stepsize) =
1

nh3

[
k′′
(
x+ stepsize−X1

hfirst

)
+k′′

(
x+ stepsize−X2

hfirst

)
+ ...

+k′′
(
x+ stepsize−Xn

hfirst

)]
.

We need roughness estimate for that random sample, so
we get as follows

R̂ (X1, X2, ..., Xn) = −
1

n

n∑
i=1

f̃ ′′n,h (Xi).

We obtained roughness estimate as sample mean from
the smoothed estimator of second derivative of density

function. Afterword, according to minimizing IMSE ap-
proach the optimal bandwidth selection would be

hopt =

(
2c

R̂

) 1
3

n−
1
3 . (10)

This is an estimate of bandwidth based on that ran-
dom sample and it is optimum. Now we can obtain the
smoothed distribution function estimate by applying ker-
nel estimation

F̃n,hopt (x) =
1

n

n∑
i=1

K

(
x−Xi

hopt

)
. (11)

As kernel estimation is applied for producing f̃ ′′n,h (x) es-
timates, same things are repeated to achieve F̃n,hopt (x)
estimates. However, smoothed distribution function es-
timator is biased. To apply a bias reducing approach we
have to estimate bias, and so we need the smoothed es-
timator of the first derivative of density function.

Bias
(
F̃n,h (x)

)
= E

(
F̃n,h (x)

)
− FX (x) =

1

2
h2f ′ (x)µ2 (k) + o

(
h2
)
. (12)

Finally we obtain bias reduced smoothed distribution
function estimator

˜̃Fn,h (x) = F̃n,h (x)−
1

2
h2optf̃

′ (x)µ2 (k) . (13)

When we subtract the estimated bias from the smoothed
distribution function, we obtain a new function which
does not satisfy distribution function property. By using
interpolation we deduce the distribution function prop-
erty again.

5. Simulation results

In order to illustrate the reduction in variance and
MSE of the different quantile-based estimators, we per-
formed a simulation study on different Weibull distri-
butions. In particular we considered random sample of
size n = 40 from Weibull distributions with scale pa-
rameter β = 1 and shape parameter α = 1.5, 5. Note
that increasing the shape parameter makes the distribu-
tion more symmetric. We also considered contaminated
samples. Data sets with “right” contamination is gener-
ated from aN (3, (1/25)) and all simulations are repeated
1000 times.

Firstly, sample mean of estimated roughness and band-
width and their variances are tabulated in Table I.
Additionally, we also present their sampling distributions
in Fig. 1a and b. Secondly, mean of estimated bias and
variance for different estimators in the case of different
contamination level for Weibull (1.5, 1) are tabulated in
Table II. Further we also illustrate sampling distributions
of estimated bias in Fig. 1c and d. Thirdly in Table III,
the ratio of variances of estimates bias of quantile esti-
mators and median are presented. Finally we tabulated
results from bias reduced smoothed distribution function
for considered quantile-based estimators (Table IV).

For these Weibull distributions, we obtained quite dif-
ferent results about roughness and bandwidth. Actually,
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they are corresponding to each other. For Weibull(1.5,
1), we know that it is a flat distribution so we hope that
roughness will be small, as it actually is. As a result
we are allowed to use wider bandwidth. In the case of
Weibull(5, 1) we know that density is located in a small
interval, because of that it has a sharp slope which is
the reason of large roughness. So, it causes to use very

small bandwidth in order to be sensitive. Our simula-
tion results support this idea, which supplies better ker-
nel smoothing especially in the case of contamination.
Roughness and bandwidth are inverse to each other, they
act in opposite directions. When one increases the other
decreases.

TABLE I

Sampling distributions of estimated roughness and estimated bandwidth.

Contamination
Sample mean of

estimated roughness
Sample variance of
estimated roughness

Sample mean of
estimated bandwidth

Sample var. of
estimated banwidth

Weibull no 4.311779 5.679187 0.238634 0.001414
(1.5, 1) 5% 3.035389 3.765998 0.273892 0.002673

10% 2.165819 2.844849 0.312298 0.00405
Weibull no 89.9205 2031.63 0.085825 0.000142
(5, 1) 5% 67.0354 1497.13 0.096488 0.000287

10% 52.1652 1124.24 0.106141 0.00044

Fig. 1. Some sampling distribution functions.

The simulation results show that for both
Weibull(1.5, 1) and Weibull(5, 1) the variance of
estimated bias of considered estimators does not change
with respect to contamination level.

In Table III, for Weibull(1.5, 1) we see that the vari-
ance of the left side quantile estimators is the same with
the variance of the median estimator, while the variance
of the right side quantile estimators decreases sharply
(except for the first cell). For Weibull(5, 1) we see that
the variance of estimated bias sharply decreases for small
and large order of quantile estimators, while moving
from median in both direction (except for the first cell).

The variance of estimated bias for median is same in both
cases of Weibull distribution.

From Table IV, with the exception of the variance of
˜̃Q0.125, the variance of the other biased reduced smoothed
estimators decreases as it is expected for Weibull(1.5, 1).
We see that for Weibull(5, 1) for all quantile estimators
the variance decreases, although small, in some cases.

6. Real data example

This bias reducing approach is applied to a real data
collected from register of patients admitted to Başkent
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Fig. 2. Distribution function estimates.

University Hospital between January 1, 1990 and Novem-
ber 30, 1992 [11].

In Fig. 2, we see Fn (x), F̃n,h (x), F̃n,h (x) − bias and
˜̃Fn,h (x) all together. Since we subtract the estimated
bias from the smoothed distribution function, we ob-
tained a new function which does not satisfy distribution
function property. By using interpolation we deduce the
distribution function property again. We see that situa-
tion in the graph obviously.

TABLE II

Sampling distribution of estimated bias for some quantile values, Weibull(1.5, 1),
n = 40, repetition number = 1000.

Contamination ˜̃Q0.125
˜̃Q0.25

˜̃Q0.50
˜̃Q0.75

˜̃Q0.875

no

Mean of
estimated bias

–0.039962 0.004654 0.025358 0.026310 0.022103

Variance of
estimated bias

0.000129 0.001464 0.001569 0.000768 0.000507

5 %

Mean of
estimated bias

–0.047434 0.002409 0.028092 0.028447 0.020214

Variance of
estimated bias

0.001135 0.001853 0.001599 0.000780 0.000450

10 %

Mean of
estimated bias

–0.053744 –0.000895 0.034993 0.028325 0.007458

Variance of
estimated bias

0.001080 0.002081 0.001552 0.000606 0.000680

TABLE III
The ratio of variances of estimated bias of quantile estimators and median.

Weibull(1.5, 1) Weibull(5, 1)

Contamin. V ( ˜̃Q0.125)

V ( ˜̃Q0.50)

V ( ˜̃Q0.25)

V ( ˜̃Q0.50)

V ( ˜̃Q0.75)

V ( ˜̃Q0.50)

V ( ˜̃Q0.875)

V ( ˜̃Q0.50)

V ( ˜̃Q0.125)

V ( ˜̃Q0.50)

V ( ˜̃Q0.25)

V ( ˜̃Q0.50)

V ( ˜̃Q0.75)

V ( ˜̃Q0.50)

V ( ˜̃Q0.875)

V ( ˜̃Q0.50)

0% 0.082 0.933 0.489 0.323 3.577 0.622 0.724 0.490
5% 0.710 1.140 0.487 0.281 0.440 0.625 0.729 0.494
10% 0.696 1.367 0.390 0.438 0.422 0.649 0.565 0.408

Estimated bias for low quantile values is very variable
as it is seen from Table V and Fig. 2. So it has strong
effect on the estimate based on smoothed bias reduced
distribution function.

7. Conclusions

In this study, bias reduced quantile-based estimators
are obtained for Weibull distribution with varied pa-
rameters for different contamination level. Based on a
simulation study, empirical, smoothed and bias reduced
distribution functions are achieved and their graphs are
drawn. Sampling distribution of roughness estimator and
of bandwidth estimator is obtained and their graphs are
given. The sampling distribution of roughness is strongly
right skewed for all contamination level and for consid-
ered two different Weibull distributions. The sampling
distribution of bandwidth is slightly right skewed for

all contamination level and for considered two different
Weibull distributions. In simulation study, we obtained
compatible results with a structure of distribution.

The sampling distribution of estimated bias related
to quantile estimator of order 0.125 Q(0.125) is right
skewed in the case of Weibul(1.5,1) for all contamina-
tion levels. On the other hand, the sampling distribu-
tion of estimated bias related to other considered quan-
tile estimators of any order is almost symmetric in the
cases Weibul(1.5,1) and Weibul(5,1) for all contamination
levels.

Bias reducing approach seems to be very useful, it can
be applied easily. We thought that there is need to make
new study directed to determine for which estimators the
bias reducing approach is effective. Furthermore the pro-
grams for simulation studies and application are coded in
software R without using any robust packages.
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TABLE IV

Sampling distribution of some quantile-based estimators with n = 40, repetition number = 1000.

Weibull(1.5, 1) Weibull(5, 1)
0 % contamination 5% contamination 10% contamination 5% contamination
Mean Variance Mean Variance Mean Variance Mean Variance

˜̃Q0.125 0.186493 0.011263 0.180123 0.014471 0.158992 0.016854 0.676510 0.003639
˜̃Q0.25 0.449009 0.006608 0.480423 0.008124 0.497392 0.009245 0.798260 0.002464
˜̃Q0.50 0.823543 0.011203 0.889423 0.014378 0.956442 0.018891 0.967110 0.001920
˜̃Q0.75 1.292809 0.022930 1.432673 0.040414 1.610792 0.076405 1.138560 0.002846
˜̃Q0.875 1.698059 0.041995 2.000773 0.108944 2.341142 0.135284 1.350010 0.118629
˜̃IQR 0.843800 0.019222 0.952250 0.034277 1.113400 0.068420 0.340300 0.003841
˜̃OSn 0.110660 0.000000 0.138456 0.000000 0.168254 0.000000 0.005274 0.000000
˜̃QSn 0.153840 0.011543 0.211437 0.014052 0.262438 0.013712 0.053630 0.040984

TABLE V

Empirical, smoothed and smoothed bias reduced quantile-based estimates for the lifetime data
of kidney transplantation.

Qn(0.125) Qn(0.25) Qn(0.50) Qn(0.75) Qn(0.875) IQR QSn OSn

Emprical 0.5465 1.0465 3.9965 11.9299 16.8965 10.8833 0.4579 0.5780
Smoothed 0.4652 1.0799 4.3299 11.8965 16.9799 10.8167 0.3991 0.4941
S.bias-red –2.4201 0.6132 5.1299 11.7799 16.5465 11.1667 0.1910 0.2039

Estimated bias –0.1237 –0.0319 0.0855 –0.0174 –0.0273 – – –
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