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The class of generalized linear models is an extension of traditional linear models that allows the mean of
the response variable to be linearly dependent on the explanatory variables through a link function. Generalized
linear models allow the probability distribution of the response variable to be a member of an exponential family of
distributions. The exponential family of distributions include many common discrete and continuous distributions
such as normal, binomial, multinomial, negative binomial, Poisson, gamma, inverse Gaussian, etc. Also link
functions can be built as identity, logit, probit, power, log, and complementary log–log link functions. In this study,
supply, transformation and consumption, imports and exports of solid fuels, oil, gas, electricity, and renewable
energy annual data of European Union countries between 2005 and 2013 years are investigated by using generalized
linear models. In this case, the response variable is taken as annual complete energy balances of European Union
countries as a continuous variable having positive values, and the distribution of the response variable comes from
the gamma distribution with log–link function.
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1. Introduction

Generalized linear models (GZLMs) are first intro-
duced by Nelder and Wedderburn [1]. The class of
GZLMs allows the mean of a population to depend on
a linear predictor through a nonlinear link function and
allows the response probability distribution to be any
member of an exponential family of distributions [2]. In
recent years, the class of GZLMs has gained popularity
as a statistical modeling tool.

Generalized estimating equation (GEE) approach in-
troduced by Liang and Zeger [3] is a widely used statis-
tical method in the analysis of longitudinal data as an
extension of GZLM for correlated data [4, 5]. GEE ap-
proach specifies how the average of a response variable
of a subject changes with predictors (factors and covari-
ates) while allowing for the correlation between repeated
measurements on the same subject over time. To take
account of this correlation, a specification of a working
correlation structure is required in GEE. GEE approach
is based on the quasi-likelihood function given by Wed-
derburn [6] and no restrictive assumption is made about
the distribution of the response variable [7].

McCullagh and Nelder [8], Firth [9], Blough et al. [10],
Lindsey [11], Dobson and Barnett [12], Agresti [13],
Hardin and Hilbe [14], Lipsitz et al. [15, 16], and Zeger
et al. [17] are excellent references with many applications
of GZLMs and GEE approach to repeated measurements
in GZLMs in the literature.

In this study, it is aimed to analyze annually collected
energy data, covering 28 member countries of the Eu-
ropean Union (EU), Albania, Montenegro, Serbia, the
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Former Yugoslav Republic of Macedonia, and Turkey as
the candidate countries to EU membership, and Norway
as the European Economic Area country between 2005
and 2013 years, by using GEE approach as an extension
of GZLMs to repeated measurements.

2. GEE approach as an extension of GZLMs to
repeated measurements data

GZLMs have three components: the random compo-
nent, the systematic component, and the link function
between the random and systematic components [2, 8,
11–13].

The random component of GZLMs identifies the re-
sponse variable and assumes that distribution of the re-
sponse variable come from the exponential family hav-
ing many common discrete and continuous distributions
such as normal, binomial, multinomial, negative bino-
mial, Poisson, gamma, inverse Gaussian, etc.:

fY (y; θ, φ) = exp

(
yθ − b (θ)

a (φ)
+ c (y, φ)

)
(1)

for some specific functions a (·) , b (·), and c (·), canoni-
cal parameter θ, and dispersion parameter φ [8]. In this
study, the interest is on gamma distribution from the
exponential family and some characteristics of this dis-
tribution are given in Table I.

Suppose that the response variable has an associated
p× 1 vector of covariates x = (x1, . . . , xp)

′. The system-
atic component of GZLMs specifies a linear predictor η
produced by the covariates in the GZLM as follows [8]:

η = β0 + β1x1 + . . .+ βpxp. (2)
The link function of GZLMs describes the functional re-
lationship between the systematic component given by
Eq. (2) and the expected value of the random com-
ponent E(Y ; θ) given by Table I as a monotonic and
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TABLE I

Characteristics of gamma distribution in the exponential
family [8].

notation: G(µ, v) c(y, φ) = v log(vy)− log y − log Γ(v)

range of y: (0,∞) µ(θ) = E(Y ; θ) = −1/θ

dispersion parameter: canonical link:
φ = v−1 θ(µ) = µ−1

cumulant function: variance function:
b(θ) = − log(−θ) V (µ) = µ2

differentiable function g(µ) of the mean [8]. In this study,
log of the mean of the random component called log–link
function is taken as link function as follows:

g(µ) = log(µ). (3)
For more details, see [2, 8, 11–13, 18, 19].

GEE approach is an extension of the GZLMs for the
analysis of repeated measurements data. There are three
steps in the GEE approach. The first step of the GEE
approach is to relate the marginal mean of the response
variable µij = E(yij) to a linear combination of the co-
variates

g(µij) = x′ijβ (4)
where yij is the response variable for subject i at time j,
xij = (xij1, . . . , xijp)

′ is the corresponding p × 1 vector
of covariates, and β = (β1, . . . , βp)

′ is the p × 1 vector
of unknown parameters. Finally, g(·) is the link func-
tion [10, 17, 18].

The second step of the GEE approach is to describe
the variance of the response variable as a function of the
mean

V (yij) = V (µij)ϕ, (5)
where V (·) is the variance function and ϕ is a possibly
unknown scale parameter [10, 17, 18].

The third step of the GEE approach is to choose
the form of a ti × ti working correlation matrix Ri(α)
among repeated measurements over subjects for each
yi = (yi1, . . . , yiti)

′. The (j, j′) element of Ri (α) is the
known, hypothesized, or estimated correlation between
yij and yij′ . This working correlation matrix may de-
pend on a vector of unknown parameters α, which is
the same for all subjects. Thus, we assume that Ri (α)
for each subject is known except for a fixed number of
parameters α that we must estimate from the data. Al-
though this correlation matrix can differ from subject
to subject, we commonly use a working correlation ma-
trix R = R (α) (Table II) that approximates the aver-
age dependence among repeated observations over sub-
jects [10, 17, 18].

Pan [20] introduced two useful extensions of Akaike’s
information criterion (AIC) [21], based on the quasi-
likelihood function under the independence model, as
goodness-of-fit-test statistics for choosing the best work-
ing correlation structure among repeated measurements
in GEE approach given in Table III.

In Table III, I represents the independent covariance
structure, V̂ R is robust variance estimator obtained from

TABLE II

Working correlation structures for repeated measure-
ments in GEE approach [18].

Independent Exchangeable

Rjj′ =

{
1 if j = j′

0 otherwise
Rjj′ =

{
1 if j = j′

α otherwise

First-order autoregressive M-dependent

Rjj′ =

{
1 if j = j′

α|j−j′| otherwise
Rjj′ =


1 if j = j′

α|j−j′| if |j − j′| ≤ m
0 otherwise

Unstructured

Rjj′ =

{
1 if j = j′

αjj′ otherwise

TABLE III

Goodness-of-fit-test statistics for choosing the best working
correlation structure among repeated measurements in GEE
approach [20].

Quasi-likelihood information
criterion (QIC)

−2Q(µ̂, I) + 2Tr(Ω̂−1
I V̂R)

Corrected quasi-likelihood
information criterion (QICC)

−2Q(µ̂, I) + 2p

a general working correlation structure R, Ω̂I is an-
other variance estimator obtained under the assumption
of an independent correlation structure, p is the number
of parameters in the model when Tr(Ω̂

−1
I V̂ R) ≈ Tr(I)

= p [20].

3. An application on GZLMs for energy
repeated measurements data using GEE

approach

In this study, annually collected energy data, covering
28 member countries of the EU, 5 candidate countries to
EU membership, and Norway as the European Economic
Area country between year 2005 and 2013, are analysed
by using GEE approach as an extension of GZLMs to
repeated measurements.

For this aim, country is taken as subject variable. 28
member countries of the EU, Albania, Montenegro, Ser-
bia, The Former Yugoslav Republic of Macedonia, and
Turkey as the candidate countries to EU membership,
and Norway are taken as subject variable levels. Time as
year is taken as within-subjects variable. Years between
2005 and 2013 are taken as within-subject variable lev-
els. Annual complete energy balances for all products
data between 2005 and 2013 are taken as values of re-
sponse variable. Supply, transformation and consump-
tion, imports and exports of solid fuels, oil, gas, elec-
tricity, and renewable energy types of these countries be-
tween 2005 and 2013 are taken as explanatory variables
to the GZLM. Supply, transformation and consumption
of these energy types are taken as covariates into the
model. Imports and exports of these energy types are
taken as factors into the model by coding 0 and 1 depend-
ing on whether imports or exports exist or not. All data



Generalized Linear Models for European Union Countries Energy Data 399

used in this study are taken from EUROSTAT energy
database [22]. All statistical computations and data anal-
ysis are performed by using IBM SPSS Statistics 21 [23]
and SAS Enterprise Guide 4.3 [24] programmes.

Response variable probability distribution is taken as
gamma distribution and link function is taken as log-link
function. Hybrid, and maximum likelihood (ML) meth-
ods are used as parameter and scale parameter estima-
tion methods for energy data. For modelling the within-
subject variability in annual complete energy balances
repeated measurements data between 2005 and 2013; in-
dependent, exchangeable, AR(1), m-dependent, and un-
structured working correlation matrices are constituted.
Goodness-of-fit-test statistics for choosing the best work-
ing correlation structure among energy repeated mea-
surements data between 2005 and 2013 in GEE approach
are given in Table IV. From Table IV, the most small-
est information criterion (IC) values of QIC and QICC
as 192.975 and 110.985 indicate that “exchangeable” and
“independent” are the best working correlation structures
among annual complete energy balances repeated mea-
surements data. Cui [7] recommended using QIC when
these IC select different structures. So “exchangeable” is
chosen as the best working correlation structure.

In Table V, parameter estimates, standard errors of
parameter estimates, lower and upper bounds of the

Wald confidence intervals for parameters, the Wald chi-
square test statistics values, related degrees of freedom
and asymptotic significance values of statistically signif-
icant covariates and factors are given. Supply, transfor-
mation and consumption of solid fuels, oil and renew-
able energy covariates and also imports of solid fuels and
electricity, exports of oil and electricity factors are taken
as statistically significant explanatory variables into the
GZLM at α = 0.05 significance level.

TABLE IV

Goodness-of-fit-test statistics (GOF) for choosing the
best working correlation structure (WCS) among annual
complete energy balances repeated measurements data
between 2005 and 2013 in GEE approach.

WCS GOF
QIC QICC

independent 201.544 110.985*
exchangeable 192.975* 168.874

AR(1) 309.828 216.557
M -dependent 202.295 128.052
unstructured 525.732 338.994
*The most smallest IC values for QIC and QICC indicate
the best working correlation structure

TABLE V

Parameter estimates by using hybrid and ML estimation methods and also exchangeable working correlation
structure belonging to complete energy balances repeated measurements data.

Factors 95% Wald
covariates β̂ se(β̂) confidence interval Hypothesis test

lower upper Wald χ2 df p-value
intercept 7.610 0.0054 7.599 7.621 1959738.307 1 0.000

supply solid fuels 4.725×106 1.8780×106 1.044×106 8.406×106 6.330 1 0.012
supply oil 1.355×105 3.0242×106 7.618×106 1.947×105 20.062 1 0.000

supply renewable energy 2.151×105 5.8080×106 1.013×105 3.290×105 13.722 11 0.000
import solid fuels 0.041 0.0013 0.039 0.044 1060.770 1 0.000
import electricity 2.600 0.1369 2.332 2.869 361.030 1 0.000

export oil –0.742 0.0029 –0.747 –0.736 66790.365 1 0.000
export electricity 0.077 0.0025 0.073 0.082 937.657 1 0.000

By using the parameter estimates given by Table V,
the fitted GZLM with gamma log–link function for
complete energy balances data is given as follows:
log(complete energy balances)i = 7.610 + 4.725 ×
106(supply solid fuels)i + 1.355 × 105(supply oil)i +
2.151 × 105(supply renewable energy)i +
0.041(import solid fuels)i + 2.600(import electricity)i −
0.742(export oil)i + 0, 077(export electricity)i for
i = Belgium, Bulgaria, Czech Republic, Denmark,
Germany, Estonia, Ireland, Greece, Spain, France,
Croatia, Italy, Cyprus, Latvia, Lithuania, Luxembourg,
Hungary, Malta, Netherlands, Austria, Poland, Portugal,
Romania, Slovenia, Slovakia, Finland, Sweden, United
Kingdom, Albania, Montenegro, Serbia, The Former
Yugoslav Republic of Macedonia, Turkey, and Norway.

4. Results and discussion

Top 5 EU member countries having the highest actual
values of annual complete energy balances for all prod-
ucts and Turkey’s actual values between 2005 and 2013
are demonstrated in Fig. 1. As seen from Fig. 1, Turkey
(with 118532,70 thousand TOE) reached quite close to
Spain’s complete energy balances for all products actual
value (with 119329,30 thousand TOE) in 2013.

In this study, annual complete energy balances data of
EU member, candidate countries and Norway are mod-
elled in terms of supply, transformation and consump-
tion of solid fuels, oil and renewable energy, imports of
solid fuels and electricity, exports of oil and electricity
by GZLM given in Eq. (6). Actual values, estimates,
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Fig. 1. Multiple line plots of annual complete energy
balances for all products actual values for top 5 EU
member countries and Turkey between 2005 and 2013.

and the residuals (differences between the actual values
and the estimates of annual complete energy balances
for all products) for the countries best fit to GZLM, and
also most under and overestimated countries by GZLM
in 2013 are given in Table VI. From Table VI, it is seen
that Albania and Malta are the countries that best fit
to the GZLM. Germany, UK, and Turkey are the most
underestimated countries, France, Italy, and Greece are
the most overestimated countries.

TABLE VI
Annual complete energy balances estimates for the coun-
tries best fit to the GZLM, and also the most under and
overestimated countries by GZLM in 2013.

Country Annual complete energy balance
actual value estimate residual

Albania 2363.00 2355.05 7.95
Malta 872.80 763.84 108.96

Germany 324488.80 158489.00 165999.80
UK 202173.80 110154.00 92019.80

Turkey 118532.70 38194.40 80338.30
France 258949.90 801678.00 –542728.10
Italy 159515.00 328095.00 -168580.00
Greece 24300.40 89536.48 –65236.08

5. Conclusion

In this study, choosing the best working correlation
structure among annual complete energy balances re-
peated measurements data between 2005 and 2013 in
GEE approach is investigated by using QIC and QICC
information criterion. This is one of the most impor-
tant problems while working with repeated measure-
ments data taken from each subject in GEE approach.
Wrongly specified working correlation structures given
by Table II causes the misspecification of the systematic
component of the GZLMs given by Eq. (2).
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