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In the present study, effects of material non-homogeneity and two-parameter elastic foundation on the funda-
mental frequency parameters of the simply supported beams are examined. Material non-homogeneity is charac-
terized taking into account the parabolic variations of Young’s modulus and density along the thickness direction
of the beam while the value of Poisson’s ratio is assumed to remain constant. The foundation medium is assumed
to be linear, homogeneous and isotropic, and it is modeled by the Pasternak model with two parameters for de-
scribing the reaction of the elastic foundation on the beam. At first, the equation of the motion including the
effects of the material non-homogeneity and two-parameter elastic foundation is provided. Then, the solutions
including fundamental frequency parameters versus various non-homogeneity, density and foundation parameters,
and length to depth ratio adopting the Timoshenko beam theory as well as the Euler–Bernoulli beam theory are
presented. To show the accuracy of the present results, a comparison is carried out and a good agreement is found.
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1. Introduction

The concept of beams on elastic foundations has been
widely used in different fields of engineering, e.g., railroad
tracks, highway pavements and pipelines. Since soil ex-
hibits a very complex behavior, various foundation mod-
els have been developed for modeling it. Among these
models, the Pasternak two-parameter elastic foundation
(TPEF), which accounts for foundation shearing-stiffness
neglected in Winkler one-parameter foundation model, is
the commonly used one [1].

On the other hand, in the studies relating to the
vibration analysis of beams resting on elastic founda-
tion generally slender beams have been considered so
that the Euler–Bernoulli beam theory (EBBT) is usually
adopted [2, 3]. However, EBBT slightly overestimates the
frequency parameters and the error increases with the in-
crease of modes and thickness of the beam. Therefore, if
the beam is moderately short and thick, the Timoshenko
beam theory (TBT) gives more accurate results due to
that it takes into account both the shear deformation and
rotary inertia of the beam. Several researches have been
conducted on the vibration of beams resting on TPEF
adopting TBT [4–7].

All of the above mentioned studies are carried out for
homogeneous (H) beams in sense that mechanical prop-
erties of the beam are taken to be constant throughout.
However, plenty of materials exist in the nature, which
are non-homogeneous (NH), either by working under high
temperature environment or due to the physical com-
position and imperfections in the underlying materials.
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Because the use of these advanced materials in various
fields of engineering has been increasing day by day, the
vibration problems of NH beams resting on elastic foun-
dation have also received the attention of numerous re-
searchers [8–10].

From the review of available literature it is observed
that the effects of material non-homogeneity (MNH) and
TPEF on the values of fundamental frequency parame-
ters (FFPs) of simply supported beam in which the MNH
is characterized with the parabolic variation of the Young
modulus and density along the thickness direction have
not been dealt yet. In the present study an attempt is
made to address this problem.

2. Formulation and solution of the problem

Consider an elastic beam of length L, height h, resting
on TPEF as shown in Fig. 1a.

Fig. 1. (a) Coordinate and geometry of beam on
TPEF, (b) beam element.

Pressure–displacement relation of the TPEF models
are assumed to be [1]:

p(x, t) = k1w(x, t)− k2w′′(x, t), (1)
where p(x, t) is the vertical foundation reaction, w(x, t)
is the function of transverse displacements of beam,
k1 is the modulus of sub-grade reaction, k2 — shear

(375)

http://dx.doi.org/10.12693/APhysPolA.130.375
mailto:mehmetavcar@sdu.edu.tr


376 M. Avcar

foundation modulus. Note that, as k2 = 0, the Pasternak
foundation reduces to the Winkler foundation.

The equations including translational and rotational
equilibrium conditions of the beam element are (Fig. 1b):

∂Q

∂x
= ρA

(
∂2w/∂t2

)
+ k1w − k2

(
∂2w/∂x2

)
, (2)

Qdx− (∂M/∂x) dx = ρI
(
∂2Φ/∂t2

)
dx, (3)

where Q,M, ρ,A, I, and Φ are shear force, bending mo-
ment, density, area, moment of inertia, and angle of ro-
tation of beam element due to bending, respectively.

The constitutive equations of flexural and shear stiff-
nesses are as follows, respectively:

M = −EI (∂Φ/∂x) ;Q = κGAγ, (4)
where E, κ,G, and γ are the Young modulus, shear cor-
rection factor, shear modulus and increase in the slope
due to shear deformation.

The total slope of the beam is
γ = ∂w/∂x− Φ. (5)

Substitution of Eq. (5) into Eqs. (2) and (3) yield the
following equations:

(κGA+ k2)
(
∂2w/∂x2

)
− κGA (∂Φ/∂x)

−ρA
(
∂2w/∂t2

)
− k1w = 0, (6)

EI
(
∂2Φ/∂x2

)
+ κGA (∂Φ/∂x)− κGAΦ

−ρI
(
∂2Φ/∂t2

)
= 0. (7)

Using Eqs. (6) and (7) after some mathematical opera-
tions the equation of motion for the free vibration of a
H beam resting on TPEF is obtained as follows:(

EI +
EIk2
κGA

)
∂4w

∂x4
−
(
EIk1
κGA

+ k2

)
∂2w

∂x2

−
(
EIρ

κG
+ Iρ+

ρIk2
κGA

)
∂4w

∂x2∂t2

+

(
ρA+

ρIk1
κGA

)
∂2w

∂t2
+

(
ρ2I

κG

)
∂4w

∂t4
+ k1w = 0.(8)

It is assumed that the MNH of the beam stems from the
variation of Young’s modulus and mass density along the
thickness direction [9]:

E1 = E[1 + α1λ(z)], ρ1 = ρ[1 + α2λ(z)], (9)
where z̄ = z/h, λ(z̄) is the continuous function of MNH
defining the variation of Young’s modulus and density,
α1 and α2 are the non-homogeneity and density param-
eters (−0.5 ≤ αi ≤ 1, i = 1, 2). Note that the value of
Poisson’s ratio is assumed to be constant.

The MNH functions of the beam are taken to be
parabolic functions

λ(z̄) = z̄2. (10)
Considering Eqs. (9) and (10) in Eq. (8), the governing
equation for the free vibration of a NH Timoshenko beam
resting on TPEF is obtained as follows:(

D1 +
D1k2
D2κA

)
∂4w

∂x4
−
(
D1k1
D2κA

+ k2

)
∂2w

∂x2

−
(
D1D3

D2κ
+ ID3 +

D3Ik2
D2κA

)
∂4w

∂x2∂t2

+

(
D3A+

D3Ik1
D2κA

)
∂2w

∂t2

+

(
D2

3I

D2κ

)
∂4w

∂t4
+ k1w = 0, (11)

whereD1, D2 andD3 are flexural rigidity, shear modulus,
and density of the NH beam, and the following definitions
apply:

D1 = Ebh3
1/2∫
−1/2

z̄2(1 + α1λ(z̄))dz̄,

D2 =
E

2(1 + ν)

1/2∫
−1/2

(1 + α1λ(z̄))dz̄,

D3 = ρ

1/2∫
−1/2

(1 + α2λ(z̄))dz̄. (12)

The solution of Eq. (11) is sought by separation of vari-
ables. Assume that the displacement can be separated
into spatial and temporal variables [11]:

w(x, t) = ξ(x)η(t), (13)
where ξ and η are dependent on position and time, re-
spectively.

Besides, the following expressions are satisfied for the
boundary conditions of the simply supported beam:

ξ(0) = ξII(0) = ξ(L) = ξII(L) = 0. (14)
Substituting Eqs. (13) and (14) in Eq. (11), respectively,
and after some mathematical operations lead to the fol-
lowing equation:(

D1 +
D1k2
D2κA

)(nπ
L

)4
+

(
D1k1
D2κA

+ k2

)(nπ
L

)2
−ω2

[(
D1D3

κD2
+ ID3 +

D3Ik2
D2κA

)(nπ
L

)2
+

(
D3A+

D3Ik1
D2κA

)]
+ω4

(
D2

3I

κD2

)
+ k1 = 0. (15)

Consequently, Eq. (15) is a quadratic equation in ω2

and yields two values of ω2, in which the smaller one
corresponds to the free vibration of the NH Timoshenko
beam resting on TPEF. Note that the equation for the
free vibration of the NH Euler–Bernoulli beam resting
on TPEF can be obtained setting the terms including
D3I equal to zero and letting D2 → ∞ in Eq. (11) and
reapplying the above given solution procedure.
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TABLE IComparison of FFPs of H beam resting on TPEF.

Ω

KP = 0 KP = 1

Refs. [4, 5] Present study Refs. [4, 5] Present study
KW EBBT TBT EBBT TBT EBBT TBT EBBT TBT
0 9.8696 9.2740 9.8696 9.2740 13.9577 13.4473 13.9577 13.4473
10 10.3638 9.7848 10.3639 9.7848 14.3115 13.8045 14.3115 13.8045
102 14.0502 13.5408 14.0502 13.5407 17.1703 16.6781 17.1703 16.6781
103 33.1272 32.5378 33.1272 32.5378 34.5661 33.9613 34.5661 33.9613

TABLE IIFFPs of beams versus non-homogeneity and density parameters.

Ω

KW = 0,KP = 0 KW = 1000,KP = 0 KW = 1000,KP = 1

α1 α2 –0.5 0 1 –0.5 0 1 –0.5 0 1

–0.5
EBBT 9.70 9.49 9.12 33.73 33.02 31.72 35.20 34.46 33.11
TBT 9.14 8.95 8.60 33.14 32.44 31.17 34.60 33.87 32.54

0
EBBT 10.08 9.87 9.48 33.84 33.13 31.83 35.31 34.57 33.21
TBT 9.49 9.29 8.93 33.24 32.54 31.26 34.69 33.96 32.63

1
EBBT 10.81 10.58 10.17 34.06 33.35 32.04 35.52 34.78 33.41
TBT 10.15 9.94 9.55 33.44 32.74 31.45 34.89 34.15 32.81

3. Numerical results and discussion

In this section illustrative studies are given to examine
the present problem. All numerical results are expressed
according the following non-dimensional parameters:

Ω = ωL2
√
ρA/EI, KW = k1L

4/EI,

KP = k2L
2/
(
π2EI

)
. (16)

3.1. Comparative study

The FFPs of homogeneous beam resting on the Paster-
nak type TPEF versus elastic foundation parameters are
compared with those of Refs. [4, 5] in Table I for n = 1,
κ = 5/6, L/h = 5, α1 = α2 = 0, ν = 0.3. The obtained
results validate the accuracy of present formulations.

3.2. Numerical examples

Example 1. Table II shows the FFPs of beams with
and without elastic foundations versus non-homogeneity
and density parameters α1 and α2 for L/h = 5, κ = 5/6,
υ = 0.25. It is seen that values of FFPs increase with
the increase of α1, while they decrease with the increase
of α2 in all cases. Besides, the effect of MNH on the
values of FFPs varies not only according to α1 and α2,
but also presence and type of elastic foundations and
adopted beam theory.

Example 2. Table III shows FFPs of beams with and
without elastic foundations versus foundation parame-
ters, KW and KP for α1 = 1, α2 = −0.5, L/h = 5,
κ = 5/6, υ = 0.25. It is found that values of FFPs
increase with consideration of the foundation parame-
ters. Moreover, the effect of MNH on the values FFPs

TABLE III

FFPs of beams versus foundation parameters.

Ω

H Case NH case
KW KP EBBT TBT EBBT TBT
0 0 9.87 9.29 10.81 10.15
10 10.36 9.80 11.28 10.64
102 0 14.05 13.55 14.87 14.30
103 33.13 32.54 34.06 33.44
10 12.50 11.98 13.35 12.75
102 0.5 15.69 15.20 16.49 15.94
103 33.86 33.26 34.80 34.17
10 14.31 13.81 15.13 14.56
102 1 17.17 16.69 17.97 17.42
103 34.57 33.96 35.52 34.89

decreases with the increase of KW and KP, and becomes
least efficient for the Pasternak foundation.

Example 3. Table IV shows FFPs of beams with
and without elastic foundations for α1 = −0.5, α2 =
1, κ = 5/6, ν = 0.25 versus the length to depth ratio,
L/h. It is observed that values of FFPs for TBT increase
with the increase in the ratio L/h. Besides, the effect of
variation of ratio, L/h, on the values of FFPs is more
pronounced in foundationless case. Moreover, the effect
of MNH on the values of FFPs increases with the increase
in the ratio, L/h, in foundationless case, while it changes
irregularly with consideration of elastic foundations.
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TABLE IVFFPs of beams versus the length to depth ratio.

Ω

KW = 0,KP = 0 KW = 1000,KP = 0 KW = 1000,KP = 1

Case L/h 2 5 10 2 5 10 2 5 10

H
EBBT 9.87 9.87 9.87 33.13 33.13 33.13 34.57 34.57 34.57
TBT 7.46 9.29 9.71 29.14 32.54 32.96 30.00 33.96 34.40

NH
EBBT 9.12 9.12 9.12 31.72 31.72 31.72 33.11 33.11 33.11
TBT 6.93 8.60 8.98 27.66 31.17 31.57 28.43 32.54 32.95

4. Conclusions

In this study, effects of MNH and TPEF on the FFPs
of the simply supported beams are examined using TBT
as well as EBBT. Solutions including FFPs for various
combinations of non-homogeneity, density and founda-
tion parameters, and length to depth ratios are reported.

Briefly, the obtained results can be summarized as
follows:

1. The values of FFPs increase with consideration of
the elastic foundations;

2. The variation of non-homogeneity and density pa-
rameters have adverse effects on the values of FFPs;

3. The presence of elastic foundation decreases the ef-
fects of MNH and length to depth ratio on the val-
ues of FFPs;

4. MNH is more influential on the values of FFPs in
the Winkler foundation and EBBT cases in com-
parison with the Pasternak foundation and TBT
cases.

The presented results prove the importance of the effects
of MNH and TPEF on FFPs of beams.
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