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The Method and Software for the Solution of Dynamic Waves
Propagation Problem in Elastic Medium
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This paper describes the numerical method for the solution to the problem of propagation of dynamic waves in
elastic media – the bicharacteristics method with the usage of the ideas of the splitting method. The bicharacter-
istics method is one of the most convenient methods for software creating. In this research paper we have worked
on the solution for non-stationary problem of the homogeneous isotropic elastic body dynamics using the bicharac-
teristics method, based on which the “ProgWave” software was designed. With this software, we have obtained the
plots of isolines of normal and tangent tensions, which are very important for the studies of non-stationary dynamic
waves propagation in flat elastic bodies, in engineering practice at construction designs calculation, in problems of
mechanical engineering, etc.
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1. Introduction

The need for qualitative and quantitative analysis of
the dynamic effects of the stress-strained state is increas-
ing because of the connection with the various fields of
engineering, structural elements, working in the dynamic
load conditions. As a result of the dynamic loads, an
elastic wave takes place in the testing body and a reli-
able calculation of it helps in evaluating the strength and
reliability of the entire design and technology.

Nowadays the numerical methods of spatial charac-
teristics [1–3], finite elements [4], the boundary integral
equations [5], etc., are used for solving dynamic problems
in elastic media.

In this paper, we offer the bicharacteristics method
with the usage of ideas of splitting method for solution of
the homogeneous isotropic elastic body [3, 6–9]. The ad-
vantage of this method is that it allows approaching the
maximum dependence domain of the final and differential
equation to the dependence area of the initial differential
equation [10–12].

Many software programs are based on numerical meth-
ods as well as methods of finite elements and boundary
elements. The originality of this research work is in the
design of the software, based on bicharacteristics method,
which is one of the most convenient methods for design
applications.

2. Statement of problem

Let us consider an elastic semi-strip of final width,
which in the Cartesian system of x1Ox2 coordinates oc-
cupies the area 0 < x2 < ∞, |x1| < l (Fig. 1). At an
initial timepoint the body is in the state of rest:

ϑi = 0, σij = 0, (i, j = 1, 2). (1)
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Fig. 1. The area of study.

At any other time on the site N1 ≤ x2 ≤ N2, x1 = l, on
the border BN acts an uniformly distributed normal load
transient f(t), which varies according to sine law

σ22 (t) =

{
−A sin (ωt) , 0 ≤ t ≤ S1,

0, t ≥ S1,

σ21 (t) = 0.

(2)

Where S1 is action time of the load and ω = π/S1. Other
part of border of a semi-strip is free from any influence:

σ11 (t) = 0, σ12 (t) = 0, x1 = 0, |x1| ≥ l,
σ22 (t) = 0, σ21 (t) = 0,

0 ≤ x1 /∈ (N1, N2) , |x2| = l.

(3)

Under existing conditions it is necessary to investigate an
elastic body tension at t > 0.

3. The defining equations of bicharacteristics

In order to solve the problem with given initial and
boundary conditions, the system of the equations con-
sisting of the movement and ratios equations of the gen-
eralized Hooke’s law is used:
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σiβ,β = ρ
∂2ui
∂t2

, (4)

and
σij = λuβ,βδij + µ (ui,j + ui,j) , (5)

where ρ is density, λ, µ are Lama’s constants, δij is Kro-
necker delta.

For convenience independent dimensionless variables
and required sizes are defined [3].

t̄ =
tc1
b
, x̄i =

xi
b
, ῡi =

1

c1

∂ui
∂t

, σ̄ij =
σij
ρc21

,

γ12 =
c2
c1
, γ11 = 1− 2γ221, (i, j = 1, 2) , (6)

where b is reference length, c1 =
√

λ+2µ
ρ , c2 =

√
µ
ρ are

datum speeds.
After the integration of non-dimensional variables, the

motion equations (4) and differentiated over time corre-
lation of the generalized Hooke’s law (5) take the form:

ϑ̇1 = σ11,1 + σ12,2,

ϑ̇1 = σ21,1 + σ22,2,

σ̇11 = ϑ1,1 + γ11σ2,2,

σ̇22 = γ11ϑ1,1 + σ2,2,

σ̇12 = γ212(ϑ1,2 + ϑ2,1).

(7)

For equations of bicharacteristics and conditions on
them, let us split the two-dimensional system (7) into
a one-dimensional, by applying ideas of K.A. Bagri-
novski and S.K. Godunov of splitting multidimensional
t-hyperbolic systems into one-dimensional systems on
xk = const [9]{

υ̇i − σij,j = aij ,

σ̇ij − λ2ijυi,j = bij ,
(8)

where aij = σik,k; λij = σij + γ12 (1− δij); bij =
[γ11δij + γ212 (1− δij)]ϑp,k.

Hence below i, j, k, p = 1, 2; p 6= i, k 6= j. From here,
using known methods of obtaining the differential equa-
tions bicharacteristics and conditions on them, we get:

dxj = ±λij dt, dσij ± λij dυi = (bij ± λijaij) dt.(9)
This body is divided into square cells, with sides of
∆x1 = ∆x2 = h. The double points are searched func-
tion values ϑi, σij at various time points with step τ .
The grid of dots, on the basis of which the differ-
ence scheme is built, other than these mentioned double
points, contains points formed by the intersection with
bicharacteristics hyper planes t = const. Accepted pat-
tern consists of O node and E±

ij points, separated from
the point O by distance λijτ . In the future discussion
values of the functions at the point O are denoted by
upper index “0”, values at the points E±

ij are denoted by
lower index “ij” and the upper index “±” (for example
σ±
ij), and values at point A are not not denoted by an

additional index [13–16].
The integration of Eqs. (7) from the point O to

the point A and the relations (9) from the point E±
ij

to point A using trapezoid method allows to obtain the
expression of the following form

ϑi = ϑ0i +
τ

2
(σij,j + aij + ϑ0i ),

σ̇ij = σ0
ij +

τ

2
(λ2ijυi,j + bij + σ̇0

ij), (10)

σij − σ±
ij ∓ λij

(
υi + υ±i

)
=

τ

2
(bij + b±ij ∓ λij [aij + a±ij ]). (11)

By summing up and subtracting system equations with
identical indexes pairs, we get

υi,j = υ0i,j + τ
(
σ0
ij,jj + a0ij,j

)
,

σij,j = σ0
ij,j + τ(λ2ijυ

0
i,jj + b0ij,j). (12)

4. Final remarks

To solve this problem we have developed the “Prog-
Wave” software, which makes it possible to obtain the
plots of isolines of normal and tangent tensions.

“ProgWave” is based on bicharacteristics method with
the usage of ideas of splitting method. The decision al-
gorithm is realized in the algorithmic language on the
grid with a step of τ = 0.025, h = ∆x1 = ∆x2 = 0.05.
In this problem statement the calculation was made for
steel ρ = 7900 kg/m3, c1 = 5817 m/s, c2 = 3109 m/s,
for the following values of basic parameters: A = 0.5,
ω = 4.5, l = 5h, L = 70h, N1 = 10h, N2 = 14h.

The “ProgWave” software is universal and it is pos-
sible to change the function of the non-stationary load
and parameters of the design material depending on the
statement of problem. In this paper using the software
“ProgWave” we have obtained isolines of normal and tan-
gent tensions at several moments of time.

Fig. 2. Isolines of normal tension.

In Figs. 2 and 3 one can see the isolines of normal σ11
and tangent σ12 tension, corresponding to a time point
t = 20τ . During this time, the boundary perturbation
propagating from the influenced local site has traveled a
distance of 10h and has reached the opposite border.
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Fig. 3. Isolines of tangent tension.

At a timepoint t = 40τ , the tension fields symme-
try, characteristic for t = 20τ , with respect to axis at
x1 = 12h is still visible in the vicinity of the symmetry
axis. With the increasing separation from this axis, the
symmetry of isolines becomes broken. This result is ex-
plained by the influence on the nature of distribution of
tension from a free end AB in the field of x1 ≤ N1 and
absence of similar effects in the field of x1 ≤ N2.

5. Conclusions

In the design and construction of engineering struc-
tures for more economical use of materials it is necessary
to consider not only the static load on structures, but also
the dynamic one, which may occur, for example, in areas
with high seismic activity. Powerful dynamic load can-
not be determined without a full study of the space-time
picture of the state of stress of the solid object, appearing
during the propagation of elastic waves.

In this paper, the solution of problem of non-
stationary dynamic waves propagation in flat elastic bod-
ies was offered using bicharacteristics numerical method.
The practical implementation has been carried out by
creating “ProgWave” software.

The obtained results and software can be used in
research of non-stationary dynamic waves propagation
in flat elastic bodies, in engineering practice at con-
struction designs calculations, in problems of mechanical
engineering, etc.
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