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In the work at the level of basic laws of conservation of energy combined with the use of quadratic spline
functions a resolving system of equations is constructed. Herewith, the procedure is prepared to minimize the
functionals of total thermal energy and potential energy of elastic deformation involving temperature field.
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1. Introduction

Most of the bearing elements of electric power installa-
tions operate in the presence of local cold insulator, heat
flow, and heat transfer. To ensure the smooth opera-
tion of these elements it is necessary to develop appro-
priate computational algorithms and methods that allow
to investigate numerically the thermomechanical condi-
tion of bearing elements. Besides, obtained numerical
results should have different precision and respectively
describe such a complex exceptional nonlinear process
under study.

Under the established process for the length of the
test rod bearing element temperature field, displacement
field, elastic, thermal and thermoelastic stress compo-
nents field will arise. To determine these decisions, tak-
ing into account natural conditions and maintenance, we
should use the techniques oriented on the basic laws of
conservation of energy [1, 2].

2. Formulation of the problem and methods

We consider the bearing member in the form of a hori-
zontal rod of bounded length L (cm) and constant cross-
section F (cm2), the thermal conductivity of the rod ma-
terial Kxx (W/cm K), the linear expansion α (1/K), the
elastic module E (kG/cm2). Both ends of the rod tightly
clamped.

We sway coordinate axis OX from the left to the right.
It coincides with the axis of the rod. At the closed side
surface of the rod heat current q(x), (W/cm2)=ax+b,
0 ≤ x ≤ L is brought, which varies linearly along the
length of the rod. Through the cross-sectional area the
heat transfer with the environment occurs. Herewith, the
heat transfer cooficient is h (W/cm2 K) and the environ-
ment temperature is TTE. To determine the temperature
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field along the length of the rod a functionality of full
thermal energy is constructed [1, 2].

A limited length of the rod is given L (cm), both ends
of which is fixed hard, the area of the cross-sectional rod
F (cm2) is constant along the length of the rod. Physical
and mechanical and thermal properties of the rod mate-
rial is characterized by an elastic modulus E (kG/cm2),
the coefficient of heat expansion α (1/K), heat conduc-
tion Kxx (W/cm K) and the coefficient of heat transfer
with the environment h (W/cm2 K). Heat current on the
entire length of the side surface of the rod is supplied,
which changes along with the length of the rod, follow-
ing a linear manner:
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Sals is the area of the lateral surface of the rod. Min-
imizing this functional on discrete nodal values of the
temperature a resolving system of linear algebraic equa-
tions with account for natural boundary conditions is
constructed

∂J

∂Ti
= 0, i = 1, ..., 2n+ 1. (2)

n is the number of discrete elements. Within the length of
each discrete element temperature field is approximated
by quadratic spline functions [3, 4].

After determining the temperature field a functional of
potential energy of the elastic deformation with account
for the presence of the temperature field is formed [5]:

Π =

∫
V

σx
2
εxdV −

∫
V

αET (x)εxdV. (3)

εx is a component of the elastic longitudinal deformation,
u(x) (cm) is a displacement of points of the rod, and σx is
stress. Further, minimizing the last functional on nodal
values a resolving system of linear equations based on the
natural boundary conditions is formed
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∂Π

∂Ui
= 0, i = 1, ..., 2n+ 1. (4)

Then a displacement field is formed, and on it a field of
strain and stress is built.

3. Numerical results
To get the numerical results we use the following: L =

30 cm— length of the rod, E = 2×106 kG/cm2 — amod-
ulus elasticity of the rod material, E = 2× 106 kG/cm2

— a coefficient of the thermal conductivity of rod mate-
rial, and α = 125×10−7 1/K — the coefficient of thermal
expansion. h = 10 W/cm2 — heat transfer coefficient,
TTE = 40K— the temperature of the environment. Heat
current on the lateral surface of the rod is given by the
following linear law. n = 100 — the lengths of the dis-
crete element.

With these initial data a field of stress components has
the form shown in Fig. 1.

Fig. 1. Field of distribution εx, σx, σT , σ.

This shows that the elastic component of the strain
σx (kg/cm2) in discrete elements 1–31 is compressed, 32–
88 is stretched, and 89–100 is compressed again, while
the behavior of the temperature component of the strain
σT will be constricting along the entire length of the rod.
It has the shape of a curve of higher order. Thermoelastic
component of the strain σ across the length of the rod is
constant and has a contractive character.

TABLE I

Effect of the length of the rod on the thermal stress–strain
deformed state of the test rod.

No. L [cm] R [kG] σ [kG/cm2] [%]
1. 30 –56454.58 –4494.79 100
2. 27 –47446.29 –3769.61 83.86
3. 24 –39522.13 –3146.66 70
4. 21 –32893.79 –2618.93 58.26
5. 18 –27272.95 –2179.375 48.48
6. 15 –22871.3 –1820.96 40.5

Tables I–III shows the dependence of the occurring
thermoelastic compressive force R and strain σ on the
length of the rod L, the heat transfer coefficient h and
the environment temperature TTE.

These computational experiments shows that the de-
crease in length of the rod of environment temperature

TABLE II

Influence of the heat transfer coefficient on the thermal
stress–strain deformed state of the test rod.

No. h [W/cm2] R [kG] σ [kG/cm2] [%]
1. 10 –56454.58 –4494.79 100
2. 9 –59332.916 –4723.958 105.1
3. 8 –62930.83 –5010.41 111.47
4. 7 –67556.72 –5378.72 119.66
5. 6 –73724.583 –5869.79 130.59
6. 5 –82359.583 –6557.29 145.88

TABLE III

Effect of ambient temperature on the thermal stress–
strain deformed state of the test rod.

No. TTE[
◦C] R [kG] σ [kG/cm2] [%]

1. 40 –56454.58 –4494.79 100
2. 35 –54884.58 –4369.79 97.22
3. 30 –53314.58 –4244.79 94.438
4. 25 –51744.58 –4119.79 91.657
5. 20 –50174.58 –3994.79 88.876

leads to a significant decrease in the resulting force val-
ues and strain. Reducing the coefficient of heat transfer
leads to a significant increase in the values R and σ.

4. Conclusion

A developed computational algorithm and numerical
method allows to investigate the thermomechanical state
of the bearing structural elements in the form of rods
with high precision and in all operating conditions. Thus
we can solve the class of steady problems of thermome-
chanical state of the rods under the influence of different
types of local heat sources with the help of the proposed
numerical method.
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