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Pseudo-Spherical Null Quaternionic Curves
in Minkowski Space R4
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In this study, we define the osculating pseudo-sphere of a null quaternionic Cartan curve in Minkowski space R4
1.

We give a characterization for pseudo-spherical null quaternionic Cartan curves.
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1. Introduction

In the first half of the twentieth century, Einstein has
formulated general relativity as a theory of space, time
and gravitation in semi-Riemannian space. Einstein’s
theory has opened a door for use of new geometries. One
of them is simultaneously the geometry of special rela-
tivity. Since the second half of the twentieth century,
the semi-Riemannian geometry has been among active
areas of research in differential geometry and its applica-
tions in a variety of subjects in mathematics and physics.
In a semi-Riemannian manifold, there are three differ-
ent families of curves, that is, spacelike, timelike and
null (lightlike) curves according to their causal charac-
ters. In the geometry of null curves the natural param-
eter is the pseudo-arc (see [1, 2]). In [1], Bonnor has
introduces the Cartan frame as the most useful one and
has used this frame to study the behavior of a null curve
in Minkowski space R4

1. Thus, one can use these funda-
mental results as the basic tools in researching the ge-
ometry of null curves. The theory of Frenet frames for a
null curve has been studied and developed by several re-
searchers in this field [2–4]. In [4] Çöken and Çiftci have
studied null curves in the 4-dimensional Minkowski space
R4

1, and have characterized pseudo-spherical null curves.
Recently Duggal and Jin [2] have studied the geometry
of null curves and their physical use. And then, Sakaki
has characterized pseudo-spherical null curves in the n-
dimensional Minkowski space in terms of the curvature
functions [5].

In mathematics, as an extension of the complex num-
ber, the quaternions are the number system in four di-
mensional vector space. The concept of number was fur-
ther extended byW.R. Hamilton, whose theory of quater-
nions (1843) provided the first example of a noncom-
mutative algebra (i.e., one in which pq 6= qp). There
are different types of quaternions, namely real, com-
plex and dual quaternions. A real quaternion, defined
as q = ae1 + be2 + ce3 + d, is composed of four units
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(1,e1,e2,e3), where e1, e2, e3 are orthogonal unit spatial
vectors and a, b, c, d are real numbers. This quaternion
may be written as a linear combination of a real part and
vectorial part. The space of quaternions Q is isomorphic
to E4, the four-dimensional vector space over the real
numbers. Quaternions have played a significant role re-
cently in several areas of the physical science, namely in
differential geometry, in analysis and quaternionic formu-
lation of equation of motion in theory of relativity.

The theory of Frenet frames for a quaternionic curve
has been studied and developed by several researchers in
this field [6, 7]. After them, Tuna Aksoy and Çöken have
studied differential geometry of null quaternionic curves
in semi-euclidean 3-spaces R3

v and gave the Frenet for-
mula for null quaternionic curves by using spatial quater-
nions. And then, they have recently constructed Cartan
frame for a null quaternionic curve in the 4-dimensional
Minkowski space R4

1 [8]. Bektaş et al. have defined the
osculating spheres of a semi real quaternionic curve in
semi-euclidean spaces E3

1 and E4
2 [9].

In this work, we introduce the geometric properties
of null quaternionic curves in 4-dimensional Minkowski
space. We use the null quaternionic Cartan frame
(and the null quaternionic Cartan curvatures), use them
to generate pseudo sphere null quaternionic curves in
Minkowski space and investigate its properties. Here, by
using the similar idea of Çöken and Çiftçi [4], we show
that a null quaternionic curve is a a pseudo-spherical
curve if and only if (p− τ) is a nonzero constant.

2. Preliminaries
Let us give the basic concepts about the semi-real

quaternions. The set of the semi real quaternions
Qv = {q|q = ae1 + be2 + ce3 + d;

a, b, c, d ∈ R, e1, e2, e3 ∈ R3
v(v=1,2),

hv (ei, ei) = ε (ei) , 1 ≤ i ≤ 3} ,

where
ei × ei = −ε(ei), 1 ≤ i ≤ 3,

ei × ej = ε (ei) ε (ej) ek ∈ R3
1,

ei × ej = −ε (ei) ε (ej) ek ∈ R4
2

and (ijk) is an even permutation of (123). The multipli-
cation of two semi real quaternions p and q is defined by
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p× q = SpSq + SpVq + SqVp + h(VpVq) + Vp ∧ Vq
for every p, q ∈ Qv, where we have used, the inner and
cross products in semi-euclidean space R3

v. For a semi
real quaternion q = ae1 + be2 + ce3 + d ∈ Qv the con-
jugate αq of q is defined by αq = −ae1 − be2 − ce3 + d.
Thus, we define symmetric, non-degenerate valued bilin-
ear form h as follows:

hv : Qv×Qv → R

by

h1(p, q) =
1

2
[ε(p)ε(αq)(p× αq) + ε(q)ε(αp)(q × αp)]

for R3
1 and

h2(p, q) =
1

2
[−ε(p)ε(αq)(p× αq)− ε(q)ε(αp)(q × αp)]

for R4
2, where

hv(q, q) = a2ε(e1) + b2ε(e2) + c2ε(e3) + d2

for υ = {1, 2} and it is called the semi-real quaternion in-
ner product. The vector product of two semi real quater-
nions p = a1e1+b1e2+c1e3+d1 and q = ae1+be2+ce3+d
is defined as

Vp ∧ Vq = ε (e2) ε (e3) (b1c− bc1) e1
−ε (e1) ε (e3) (a1c− ac1) e2
+ε(e1)ε(e2)(a1b− ab1)e3,

for υ = 1 and
Vp ∧ Vq = −ε (e2) ε (e3) (b1c− bc1) e1

+ε (e1) ε (e3) (a1c− ac1) e2
−ε(e1)ε(e2)(a1b− ab1)e3,

for υ = 2. And then, the norm of semi real quaternion q
is denoted by
‖ q ‖2= |hv(q, q)| = |a2ε(e1) + b2ε(e2) + c2ε(e3) + d2|

for υ = {1, 2}.
The use of the concept of a spatial quaternion will be

made throughout our work. q is called a spatial quater-
nion whenever q + αq = 0. It is a temporal quaternion
whenever q − αq = 0 [6–9].

2.1. Null quaternionic curves in R4
1

Let h, denote the semi quaternionic metric on
R4

1. A curve β(s) in R4
1 is a null quaternionic

curve if h(β′(s), β′(s)) = 0 and β′(s) 6= 0 for all
s. We note that a null quaternionic curve β(s) in
R4

1 satisfies h(β′′(s), β′′(s)) 6= 0. We say that a
null quaternionic curve β(s) in R4

1 is parametrized
by the pseudo-arc if h(β′′(s), β′′(s)) = ±1. Let
β (s) = γ1 (s) e1 + γ2 (s) e2 + γ3 (s) e3 + γ4 (s) be a null
quaternionic curve in R4

1. The three-dimensional semi-
euclidean space R3

v is identified with the space of null
spatial quaternions

{
β ∈ QR4

1
|β + αβ = 0

}
in an obvi-

ous manner β : I ⊂ R → QR4
1
, s → β(s) =

4∑
i=1

γi(s)ei,

1 ≤ i ≤ 4. Let {L,N,U,W} be the Frenet trihedron

of the differentiable for null spatial quaternionic curve
in Minkowski space R4

1. We consider a Cartan null
quaternionic curve β in the 4-dimensional Minkowski
space (R4

1, h) with a Cartan frame {L,N,U,W} with
respect to a pseudo-arc parameter s so that its Cartan
equations are

L′ =W, N ′ = (p− τ)U + pW,

U ′ = (p− τ)L, W ′ = pL+N

and
L′ =W, N ′ = (τ + p)U + pW,

U ′ = (τ + p)L, W ′ = pL+N,

where
h(L,L) = h(N,N) = h(L,U) = h(N,U) = h(W,U)

= h(N,W ) = h(L,W ) = 0,

h(U,U) = h(W,W ) = +1 ∧ h(L,N) = −1.

3. Pseudo-sphere null quaternionic curves in R4
1

In this section, we define pseudo-sphere null quater-
nionic curves. Null quaternionic curves that completely
lie on a pseudo-sphere of radius r > 0 and of center A
are given by S3

1(r) = {X ∈ R4
1 : h(X − AX − A) = r2}

(see [10] for null curve definition). We define the oscu-
lating pseudo-sphere as follows.
Definition 3.1. Let β be a null quaternionic Cartan

curve in R4
1. Then the pseudo-sphere having 5 point con-

tact with β is called the osculating pseudo-sphere of β
(see [4] for null curve).

We assume β(s) be a null quaternionic Cartan curve in
R4

1 with respect to a special paramerter s having Cartan
curvatures p, (p− τ).
Lemma 3.2. Let β(s) be a null quaternionic Cartan

curve in R4
1. The center point of the osculating pseudo-

sphere at a point β(s) is A(s0) = β(s0)− 1
p−τU(s0).

Proof. For any point β(s0) the position vector A(s0)−
β(s0) can be written as a linear combination of the Car-
tan frame {L,N,U,W} as follows:

A(s0)− β(s0) = m1L+m2N +m3U +m4W, (1)
where mi for 1 ≤ i ≤ 4 are differentiable functions. Con-
sider the function

f(s) = h(A(s0)− β(s0), A(s0)− β(s0))− r2,

where r is the radius of the osculating pseudo-sphere,
thus the equations

f(s0) = f ′(s0) = f ′′(s0) = f ′′′(s0) = f (4)(s0) = 0,

are satisfied due to the definition of the osculating
pseudo-sphere at s0, then a straightforward computation
leads to

h(L(s0), A(s0)− β(s0)) = 0 ∧ m2 = 0,

h(W (s0), A(s0)− β(s0)) = 0 ∧ m4 = 0,

h(N(s0), A(s0)− β(s0)) = 0 ∧ m1 = 0,

h(U(s0, A(s0)− β(s0)) = 0 ∧ m3(s0) = − 1
p−τ .
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Thus we obtain

m1 = m2 = m4 = 0 ∧ m3(s0) = −
1

p− τ
.

Therefore, Eq. (1) implies that A(s0) − β(s0) = − 1
p−τU

and r = | − 1
p−τ | in the notations above.

Theorem 3.3. Let β be a null quaternionic Cartan
curve. Then β is a pseudo-spherical curve if and only if
(p− τ) is a nonzero constant.
Proof. Suppose that β lies on S3

1(r). Then the oscu-
lating pseudo-spheres at all points of the curve are ex-
actly S3

1(r), and so r and 1
p−τ are constant.

Conversely, assume that 1
p−τ is a nonzero constant,

then all of the osculating pseudo-spheres have the same
radius. Moreover, if we consider the function A(s0) =
β(s0) − 1

p−τU(s0), giving the central point of the oscu-
lating pseudo-sphere, its derivative is zero everywhere, so
it is constant. Consequently, the curve β lies on S3

1(r),
since the equation h(X −A, X −A) = r2 is valid for all
s, which completes the proof.

Since h(X −A, X −A) = | − 1
p−τ |

2, null quaternionic
curves with 1

p−τ =const. lie on pseudo-sphere S3
1 (r).

Corollary 3.4. A quaternionic Cartan curve β ⊂ R4
1

fully lies on a pseudo-sphere if and only if there exists a
fixed point A such that f or each s ∈ I

h(X(s)− β(s), −β′(s)) = 0.

4. Conclusions

We can characterize pseudo-sphere null quaternionic
curve by means of the quaternionic Cartan curvatures
in R4

1. Null quaternionic curves that have (p − τ) as a
nonzero constant, lie on a pseudo-sphere. More generally,
there is no three dimensional null quaternionic curve that
lies on a pseudo-sphere in Minkowski space-time (see [11]
for null curves).

Similar results were also obtained for other null
quaternionic Cartan frame. Let e2 be a time-like vector
in R4

1 with other Cartan frame by

L′ =W, N ′ = (τ + p)U + pW, U ′ = (τ + p)L,

W ′ = pL+N.

Here, by using the similar idea of above theorems, we
can obtain the following results

A(s0) = β(s0)−
1

p+ τ
U(s0).

References

[1] W.B. Bonnor, Tensor N.S. 20, 229 (1969).
[2] K.L. Duggal, D.H. Jin, Null Curves and Hypersur-

faces of Semi-Riemannian Manifolds, World Scientific
Publishing, 2007, p. 83.

[3] A. Bejancu, Publ. Math. Debrecen 44, 145 (1994).

[4] A.C. Çöken, Ü. Çiftçi, Geometriae Dedicata 114, 71
(2005).

[5] M. Sakaki, Turk. J. Math. 34, 417 (2010).
[6] K. Bharathi, M. Nagaraj, Indian J. Pure Appl. Math.

18, 507 (1987).
[7] A.C. Çöken, A. Tuna, Appl. Math. Comp. 155, 373

(2004).
[8] A. Tuna Aksoy, A.C. Çöken, Acta Phys. Pol. A 128,

B-286 (2015).

[9] Ö. Bektaş, N. Bayrak Gürses, S. Yüce, E. J. Pure
App. Math 7.1, 86 (2014).

[10] B.O. Neill, Semi-Riemannian geometry with applica-
tions to relativity, Academic Press, New York 1983.

[11] M.P. Torgasev, E. Sucurovi, Matematicheskii Vestnik
53, 21 (2001).

http://dx.doi.org/10.1007/s10711-005-4804-1
http://dx.doi.org/10.1007/s10711-005-4804-1
http://dx.doi.org/10.3906/mat-0812-14
http://dx.doi.org/10.1016/S0096-3003(03)00783-5
http://dx.doi.org/10.1016/S0096-3003(03)00783-5
http://dx.doi.org/10.12693/APhysPolA.128.B-286
http://dx.doi.org/10.12693/APhysPolA.128.B-286

