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1. Introduction

The geometry of null curves in Minkowski spacetime
has played an important role in the development of gen-
eral relativity, as well as in mathematics and physics of
gravitation. Many scientists have used Minkowski space
to apply general relativity. There has been an increase
in research on null curves in geometry and physics [1].
Bonnor [2] has introduced a Cartan frame for null curves
in R4

1 and proved the fundamental existence and congru-
ence theorems. Bejancu [3] has given a method for the
general study of the geometry of null curves in lightlike
manifolds and in semi-Riemannian manifolds. A. Ferran-
dez, A. Gimenez and P. Lucas [4] have shown that a null
Frenet curve, parametrized by the pseudo-arc parameter,
is a null helix, if its lightlike curvature is constant. Çöken
and Çiftçi [5] have reconstructed the Cartan frame of a
null curve in Minkowski spacetime for an arbitrary pa-
rameter, and have characterized the Bertrand null curves.
And then, Duggal and Jin [6] have studied major devel-
opments of null curves, hypersurfaces and their physical
use, in their recent book with voluminous bibliography.

Quaternions were discovered by Hamilton as an exten-
sion to the complex numbers in 1843. Quaternions have
found a broad application in many scientific areas: in me-
chanics of a solid body, for the description of rotation in
space, in computer animation, etc. One of the most im-
portant tools used to analyze a quaternionic curve is the
Frenet frame. Therefore, in [7], Bharathi and Nagaraj
have defined Serret-Frenet formulas for a quaternionic
curve in E3 and E4, and then Çöken and Tuna have stud-
ied Serret-Frenet formulas for quaternionic curves and
quaternionic inclined curves in semi-euclidean spaces [8].
Moreover, we have studied the differential geometry of
null quaternionic curves in semi-euclidean 3-spaces R3

v

and gave the Frenet formula for null quaternionic curves
by using spatial quaternions. We have constructed re-
cently the Cartan frame for a null quaternionic curve
in the 4-dimensional Minkowski space R4

1 [9]. Then, we
have established a relation of Bertrand pairs with null
quaternionic Cartan helices in R3

v [10].
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The main goal of this paper is to define null
quaternionic Bertrand curves in the four-dimensional
Minkowski spaces. Here, by using the similar idea of
Çöken and Çiftçi [5], we show that a null quaternionic
curve is a Bertrand curve if and only if it has nonzero
constant first Frenet curvature and it has a zero second
Frenet curvature. Null quaternionic helices are the only
null quaternionic Bertrand curves. We prove that the
distance between null quaternionic Bertrand curves is a
constant. Null quaternionic Bertrand curves are charac-
terizated with Cartan curvatures.

2. Preliminaries

Let QH denotes a four dimensional vector space over
the field H of characteristic grater than 2. Let ei (1 ≤
i ≤ 4) denote a basis for the vector space. Let the rule of
multiplication on QH be defined on ei (1 ≤ i ≤ 4) and ex-
tended to the whole of the vector space by distributivity
as follows.

The set of the semi-real quaternions is defined by
QH = {q|q = ae1 + be2 + ce3 + d;

a, b, c, d ∈ R, e1, e2, e3 ∈ R3
v(v=1,2),

hv (ei,ei) = ε (ei) , 1 ≤ i ≤ 3} ,

where
ei × ei = −ε(ei), 1 ≤ i ≤ 3,

ei × ej = ε (ei) ε (ej) ek ∈ R3
1,

ei × ej = −ε (ei) ε (ej) ek ∈ R4
2

and (ijk) is an even permutation of (123). The multipli-
cation of two semi real quaternions p and q is defined by

p× q = SpSq + SpVq + SqVp + h(Vp, Vq) + Vp ∧ Vq
for every p, q ∈ QH , where we have used the inner and
cross products in semi-euclidean space R3

v. For a semi
real quaternion q = ae1 + be2 + ce3 + d ∈ QH the con-
jugate αq of q is defined by αq = −ae1 − be2 − ce3 + d.
Thus, we define symmetric, non-degenerate valued bilin-
ear form h as follows:

hv : QH ×QH → R, by

h1(p, q) =
1

2
[ε(p)ε(αq)(p× αq) + ε(q)ε(αp)(q × αp)]

for R3
1 and
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h2(p, q) =
1

2
[−ε(p)ε(αq)(p× αq)− ε(q)ε(αp)(q × αp)]

for R4
2, where

hv(q, q) = a2ε(e1) + b2ε(e2) + c2ε(e3) + d2

for υ = {1, 2} and it is called the semi-real quaternion in-
ner product. The vector product of two semi real quater-
nions p = a1e1+b1e2+c1e3+d1 and q = ae1+be2+ce3+d
is defined as

Vp ∧ Vq = ε (e2) ε (e3) (b1c− bc1) e1

−ε (e1) ε (e3) (a1c− ac1) e2

+ε(e1)ε(e2)(a1b− ab1)e3,

for υ = 1 and
Vp ∧ Vq = −ε (e2) ε (e3) (b1c− bc1) e1

+ε (e1) ε (e3) (a1c− ac1) e2

−ε(e1)ε(e2)(a1b− ab1)e3,

for υ = 2. And then, the norm of semi real quaternion q
is denoted by
‖ q ‖2 = |hv(q, q)| = |a2ε(e1) + b2ε(e2) + c2ε(e3) + d2|,

for υ = {1, 2}.
The use of the concept of a spatial quaternion will be

made throughout our work. q is called a spatial quater-
nion whenever q + αq = 0. It is a temporal quaternion
whenever q − αq = 0 [7–10].

2.1. Null quaternionic curves in R4
1

Let h, denote the semi quaternionic metric on R4
1.

A curve C(s) in R4
1 is a null quaternionic curve if

h(C ′(s), C ′(s)) = 0 and C ′(s) 6= 0 for all s. We
note, that a null quaternionic curve C(s) in R4

1 satisfies
h(C ′′(s), C ′′(s)) 6= 0. We say that a null quaternionic
curve C(s) in R4

1 is parametrized by the pseudo-arc if
h(C ′′(s), C ′′(s)) = ±1.

Let C(s) = C1(s)e1+C2(s)e2+C3(s)e3+C4(s) be a null
quaternionic curve in R4

1. The three-dimensional semi-
euclidean space R3

v is identified with the space of null
spatial quaternions C ∈ QR4

1
|C + αC = 0} in an obvious

manner C : I ⊂ R → QR4
1
, s → C(s) =

4∑
i=1

Ci(s)ei,

1 ≤ i ≤ 4. Let {L,N,U,W} be the Frenet trihedron
of the differentiable for null spatial quaternionic curve in
Minkowski space R4

1.
Null quaternionic Frenet curves parametrized by the

pseudo-arc parameter are called null quaternionic Cartan
curves. Let C(s) is a null quaternionic Cartan curve in
(R4

1, h), where the quaternionic metric h represents the
background gravitational field and {C ′(s) = L,N,U,W}
is its Cartan frame with respect to a special paramerter s.
Again, for physical reasons, the orientation is such that
h(L,N) = −1, h(W,W ) = h(U,U) = 1 and all other
products vanish. The Cartan equations are

L′ = W, N ′ = (p− τ)U + pW,

U ′ = (p− τ)L, W ′ = pL+N

and

L′ = W, N ′ = (τ + p)U + pW,

U ′ = (τ + p)L, W ′ = pL+N,

where
h(L,L) = h(N,N) = h(L,U) = h(N,U) =

h(W,U) = h(N,W ) = h(L,W ) = 0,

h(U,U) = h(W,W ) = +1 ∧ h(L,N) = −1.

3. Characterization of null quaternionic
Bertrand curves

Now we define Bertrand null quaternionic curve in
Minkowski space R4

1 and study Bertrand property for
null quaternionic Cartan curves.
Definition 3.1. Let (C, C̄) be a pair of framed null

quaternionic curves in R4
1, with distinguished parameters

s and s̄, respectively. This pair is said to be a null quater-
nionic Bertrand pair if their principal normal vector fields
are linearly dependent. A Cartan null quaternionic curve
that has a Bertrand null quaternionic mate is said to be
a Bertrand null quaternionic curve (see [5, 6] for null
curves).

The curve C̄ is called a Bertrand mate of C and vice
versa. A null quaternionic Frenet curve is said to be a null
quaternionic Bertrand curve if it admits a quaternionic
Bertrand mate. By the above Definition 3.1., there exists
a functional relation s̄ (s) = s for a null quaternionic
Bertrand pair (C, C̄), such that W̄ (s̄) = ±W , the normal
lines coincide at their respective points. To show that,
the null quaternionic Bertrand curves have been used in
characterizing null quaternionic helices.

We give the following characterization theorems for
null quaternionic Bertrand pair in R4

1

Lemma 3.2. The distance |λ| between corresponding
points of a null quaternionic Bertrand curve and of its
Bertrand mate (or Bertrand conjugate) is a constant.
Proof. Let C (s) and C̄(s) be null quaternionic

Bertrand curves, with respect to a special paramerter
s and suppose that {L,N,U,W} and

{
L̄, N̄ , Ū , W̄

}
are

their quaternionic Cartan frames, respectively. Then we
can write

C̄ (s) = C (s) + λ (s)W (s), (3.1)
since the normal lines coincide. Suppose s and s̄ are the
pseudo-arc paramerters of C and C̄, respectively, then
by taking derivative of (3.1) with respect to s and using
null quaternionic Cartan frame, we get

ds̄

ds
L̄ = (1 + λp)L+ λN + λ′W.

On the other hand, the condition

h
(
L̄,W

)
=

1

2

(
L̄× αW +W × αL̄

)
= 0

holds for null quaternionic Bertrand curves, hence λ′ = 0,
we deduce that λ is a nonzero constant. This means that
the norm ‖ C̄ − C ‖ is a constant.

Thus, we can obtain the following theorem.
Theorem 3.3. Null quaternionic Cartan curve in R4

1

is a null quaternionic Bertrand curve if and only if p is a
non-zero constant and (p− τ) is a zero.
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Proof. Suppose that C̄ is a null quaternionic Bertrand
mate for C. Then the previous theorem allows us to write

ds̄

ds
L̄ = (1 + λp)L+ λN, (3.2)

where λ is the distance between the curves. Since L̄ is
null, h

(
L̄, L̄

)
= L̄ × αL̄ = 0, h(L,W ) = h(N,W ) = 0

and h(L,N) = −1 hold. We obtain
2(λ′)2 − 2λ(1 + λp) = 0.

So λ = − 1
p =constant. Using this value of λ in (3.2), we

obtain
ds̄

ds
L̄ = −1

p
N. (3.3)

Differentiating (3.3) with respect to s and using Cartan
frame, we get

−W = W̄ (
ds̄

ds
)2 + L̄(

d2s̄

ds2
) +

(p− τ)

p
U. (3.4)

Since W̄ = ±W , we get h(W̄ ,W ) = ±1 and
(

ds̄
ds

)2
= 1,

d2s̄
ds2 = 0. Since h(W̄ , U) = 0, we get W̄ = −W . Thus, C̄
has same constant curvatures p 6= 0 and (p− τ) = 0.

Conversely, let C be a null quaternionic Cartan curve
with p and (p− τ) as in the hypothesis. Then consider a
null quaternionic curve C̄ with coordinate function

C̄ = C − 1

p
W. (3.5)

Differentiating (3.5) with respect to pseudo arc param-
eter s and using Cartan frame, then (C̄)′ = 1

pN , shows
that C̄ is a null quaternionic Cartan curve. Since differ-
entiating the last equations gives

(
C̄
)′′

= −W . Thus the
pseudo arc parameters of C and C̄ are the same, and the
normal vector of C is equal to the normal vector of C at
the same paramerter values. These two facts with (3.1)
imply that the normal lines of C and C̄ coincide at their
corresponding points.

Consequently, it follows from above Theorem 3.3. that
the only Bertrand null quaternionic curves in R4

1 are null
quaternionic helices with (p− τ) = 0.
Proposition 3.4. A null quaternionic Cartan curve

C in R4
1 is a three-dimensional null helix if and only if

there exist a fixed direction X such that
h (L,X) = a ∧ h (N,X) = b, (3.6)

where a and b are nonzero constants and {L,N,U,W} is
the quaternionic Cartan frame of C.

Proof. Suppose that X is a fixed direction satisfy-
ing (3.6). Then, differentiating (3.6) with respect to the
pseudo-arc parameter, we obtain

p = − b
a
∧ (p− τ) = 0.

Conversely, assume that C is a null quaternionic helix
with (p− τ) = 0. Then, if we set

X = −pL+N,

it is easy to see that X is a fixed direction and Eq. (3.6)
holds, which completes the proof.

4. Conclusions

Here, by using the similar idea of above theorems for
other null quaternionic Cartan frames, we can obtain the
following result. The only Bertrand null quaternionic
curves in R4

1 are null quaternionic helices with (p+τ) = 0.
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