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Accelerating Processors with Simple Touches
A. Gürhanli∗

Bursa Orhangazi University, Department of Computer Engineering, Bursa, Turkey

Computer architects are familiar with complex processor designs. A tiny performance improvement may need
involvement of numerous experts and months of tedious work. But sometimes without adding lots of extra hardware
or inventing complex hardware algorithms, it is still possible to accelerate a design substantially by doing minor
alterations in the data path. This paper presents how an ARM compatible processor’s clock rate became 1.285
times faster by changing IO pads, employing multiplexers, and improving the ALU design. The processor has been
implemented in Verilog HDL and the performance improvements have been verified by simulation using the Design
Compiler tool of Synopsys.
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1. Introduction

Amdahl’s law states that the overall speedup obtained
by improving some portion of a computer system is lim-
ited by the portion of the time during which the faster
mode can be used. The law is described with the formula
below,

Soverall =
1

(1− Fenhanced) +
Fenhanced
Senhanced

, (1)

where S is the speedup and F is the fraction of time
during which the enhanced speedup can be used.

Hennessy [1] gives an interesting example. Overall
speedup obtained from a marvelous design that makes
the floating point square root unit 10 times faster will be
only 1.22 times, if the square root operation is respon-
sible of 20% of the overall execution time. The overall
speedup will be even less if enhanced fraction is smaller.

In recent years, the main focus of computer architec-
ture researches is on multicore processing and parallel
computing. However, a vast majority of embedded pro-
cessors still have only one core and their speed cannot be
improved with multicore approaches. So decreasing the
average clock cycles per instruction and increasing the
clock frequency are still major acceleration methods for
single core embedded processors. Multicore processors
will benefit from clock frequency improvements, as well.

When the clock frequency of a processor is increased,
all the instructions are related with the improvement and
the Fenhanced term in Eq. (1) is 100%. That will yield
Soverall = Senhanced. So optimizations and design im-
provements related to clock frequency are worth to care
about.

2. Related work

Numerous academic researches have been done with
the goal of having faster processors. Some focused on
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improving clock frequency, some others proposed archi-
tectures crunching more instructions per clock cycle, and
recent researches mostly dealt with exploiting potential
parallelism. Various instruction-level, thread-level and
request-level parallelism opportunities have been evalu-
ated by many research groups.

For example, Albonesi [2] introduced a dynamic
IPC/clock rate optimization. Childers [3] developed an
adaptive processor supply voltage for instruction-level
parallel schemes. Hartstein [4] investigated the optimum
pipeline depth for a microprocessor. Hsu [5] proposed a
compiler directed dynamic frequency and voltage scal-
ing mechanism. Iyer [6] evaluated power and perfor-
mance of globally asynchronous locally synchronous pro-
cessors. Milutinovic [7] worked on pipeline design trade-
offs on the basis of a 32-bit gallium arsenide processor.
Adl-Tabatabai [8] focused on unlocking concurrency
for multicore programming with transactional memory.
Powell [9] tried to reduce set-associative cache energy by
employing selective-direct mapping and way prediction.

Esmaeilzadeh [10] showed that the speedup from using
multithreading on one core on an i7 processor averaged
at 1.28 for the Java benchmarks and at 1.31 for the PAR-
SEC benchmarks. This result tells us how hard it may
be to obtain a tiny performance improvement even by
employing complex and expensive methods like multi-
threading.

Our economic optimizations for an ARM instruction-
set-compatible embedded processor yielded a perfor-
mance improvement of 1.285 times, which is comparable
to multithreading benefits. This paper uses the master
thesis outcomes of the author [11].

3. Original architecture

This work has been based on an ARM instruction-set-
compatible RISC processor. The processor has been im-
plemented using the Verilog HDL. The original ARM 7
architecture is given in Fig. 1.

The processor is pipelined into three stages; fetch,
decode and execute. Fetch stage captures data from

(252)

http://dx.doi.org/10.12693/APhysPolA.130.252
mailto:ahmet.gurhanli@bou.edu.tr


Accelerating Processors with Simple Touches 253

Fig. 1. Original architecture of an ARM 7 processor.
The critical data path, limiting the clock frequency, is
the path for writing data to the memory.

the memory. Decode stage interprets the instruction
and generates the control signals for execution stage.
In the execution stage the data is processed according
to the signals coming from the control unit. Decode
and control unit is separated from the execution stage by
pipeline registers. The main components in the execution
stage are register bank, shifter, ALU, incrementer and
multiplier.

Register bank has two input and three output ports.
One input and one output port is dedicated to program
counter, which is one of the 16 user registers. Shifter
and ALU are connected serially. So the operands can be
shifted before being fed into ALU. Shifter can perform
logic and arithmetic shifts both towards left and right.

ALU performs 16 different arithmetic operations and
several logical operations. Address register may be
loaded from three sources; ALU bus, program counter
or incrementer. There are two registers for instruction
reading and one for data reading. The data read from
memory or to be written to memory can be a word or
a byte. Both big-endian and little-endian formats are
supported.

4. Design enhancements

After the first synthesis with Synopsys Design Com-
piler, the critical path for timing was the store path as
shown in Fig. 1. This path was made faster by employing
a different output pad. The technology used (UMC 0.18
CMOS) has two different pads, one has a better speed
and the other one has lower noise. When the faster pad
(P2C) was chosen, store path was no longer the bottle-
neck for a faster clock.

After changing the I/O pads, the critical path became
the one from data-in registers to the register bank, as
shown in Fig. 2. This path covers data in registers, B bus,
shifter, ALU, ALU bus and register bank.

Fig. 2. Second critical path. Moving data from mem-
ory to the register bank involves numerous data path
units, including data-in registers, B bus, shifter, ALU,
ALU bus and register bank.

Fig. 3. Modified shorter read path. A load instruction
does not need shifter and ALU units, because memory
operations and data processing are separated.
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It can be seen that the read data does not need to
pass through shifter and ALU. So, in order to minimize
the length of this path the read data is given to ALU bus
directly as shown in Fig. 3. After doing this modification,
this path was no longer the critical path.

Fig. 4. The final critical path is the one starting from
register bank and passing through B bus, shifter, ALU,
and ending up in the register bank again.

Fig. 5. Original ALU structure. Latches at the entry
hold the operands. An inverter functions serially after
the latches.

The final critical path is the one starting from regis-
ter bank and passing through B bus, shifter, ALU, and
ending up in the register bank again, which is shown in
Fig. 4. In order to shorten this path, the architecture of
the ALU was modified, as shown in Fig. 5. The serial
latches and inverters were removed and all components
were made parallel, with the exception of the multiplex-
ers and routers as shown in Fig. 6.

Fig. 6. Modified ALU. Serial latches and the inverter
at the entry have been removed. Registers keep
operands for next clock cycle only when needed. In-
verting operation is done at the arithmetic functions
unit.

5. Conclusions

After making changes stated above and giving tighter
timing constraints to both synthesis and place-route
tools, the highest frequency is increased from 70 MHz
to 90 MHz. This speedup of 1.285 times is at the level
of speedups obtained from complex and expensive tech-
niques such as multithreading. When developing com-
plex hardware for exploiting potential parallelism in the
program execution, it might be very useful to evaluate
the possible design improvements in the data path that
will lead to a faster clock frequency.
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