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K-means algorithm is one of the simplest and fastest clustering algorithms existing since more than four
decades. One of the limitations of this algorithm is estimating number of clusters in advance. This algorithm also
suffers from random initialization problem. This paper proposes a heuristic which initializes the cluster centers and
estimates the number of clusters as a discrete value. The method estimates the number of clusters and initializes
many cluster centers successfully for the clusters that are dense and separated significantly. The method selects a
new cluster center in each iteration. The point selected is the point which is most dissimilar from the previously
chosen points. The proposed algorithm is experimented on various synthetic data and the results are encouraging.
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1. Introduction

Clustering [1] is defined as a process of grouping a
set of physical or abstract objects into classes of sim-
ilar objects. Clustering is a main task of exploratory
data mining and is used for data analysis in variety of
applications such as machine learning [2], image analy-
sis [3], pattern recognition [4] and medicine [5]. Cluster-
ing methods can broadly be divided into partitional, hier-
archical, distribution based, grid based and density based
methods. Among these, partitional clustering techniques
have been very popular due to their simplicity and low
time complexity. K-means is a partitional based unsu-
pervised learning algorithm that has been developed four
decades ago.

The main idea behind K-means is to select k cluster
centers at first and then partition N observations into
k clusters such that each observation belongs to the clos-
est cluster center. Cluster is a group of similar objects.
Given a set of X observations where each observation is
d-dimensional real vector, K-means aims to partition
these X observations into K sets. Algorithm tries to
minimize within the cluster sum of squares. It has
been shown that the problem of minimizing this sum is
NP-Hard [6] even for 2 clusters and so it is for any given
K clusters even in 2D FEuclidean space. K-means at-
tempts to find a local minima for sum, and hence requires
that K to be known in advance, the global minima being
cost = 0 when K = N. Hence greedy approaches such
as K-means are used to minimize the Euclidean sum of
squares. K-means may terminate at local optimum and
we cannot guarantee global optimum.

Specifying number of clusters in advance can be seen
as huge drawback of K-means. This drawback how-
ever can be overcome by running k-means over a range
of K values and then choosing the k£ which gives the best
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result. K-means is not suitable for convex shape clusters
and clusters with very different size and is very sensitive
to noise. Another problem is efficiently selecting clus-
ters centers at start. More efficient selection of centers
will lead to the faster result. This paper proposes a new
technique to estimate number of clusters i.e. K value.
The method gives best result for separated clusters than
other types of clusters. K-means is applied partially on
data set to define intermediate clusters. Procedure to
check validity of these clusters is derived from silhouette
coefficient [7].

2. Literature survey

K-means is the most popular clustering technique of
this model developed by MacQueen [8] in 1967. How-
ever, it is sensitive to the random selection of initial clus-
ter centers. In addition to that, a prior knowledge of
the number of clusters is necessity to input to K-means.
Many researches proposed various methods [10, 11] to
overcome these problems.

Kanungo et al. [12] proposed a novel initialization
method for K-means using kd-tree. This scheme does not
pass information from one stage to its next. Du et al. [13]
developed an initialization scheme for K-means clus-
tering called PK-means to cluster the gene expression
data. The convergence rate of this technique is fast and
the computational load is less. A novel clustering al-
gorithm called modified filtering algorithm (MFA) has
been proposed in [14]. It is the improvement of the al-
gorithm in [12]. A fast K-means clustering algorithm
named FKMCUCD was proposed in [15] using cluster
center displacement. This method is significant for high-
dimensional large data. Zalik [16] proposed an efficient
algorithm named K’-means to enhance the K-means al-
gorithm by exploiting a cost function. This scheme fails
when the clusters are of various shapes such as elliptical.
Redmond et al. [17] proposed a novel seed selection al-
gorithm using kd-tree [9]. This scheme is unable to deal
with the noise. Cao et al. [18] proposed an algorithm
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by defining the cohesion degree of the neighborhood of
a given point and the coupling degree between neigh-
borhoods of the points. This algorithm has quadratic
time complexity. Khan et al. [19] designed an algorithm
called CCIA. This method first develops K'(> K) clus-
ter centers from which the desired k centers are cho-
sen. Lu et al. [20] contributed with a hierarchical ini-
tialization approach in which the clustering problem has
treated as a weighted clustering problem. A genetic clus-
tering algorithm named GAGR [21] has been proposed
to cluster the genome data using K-means. It uses the
genetic algorithm with gene rearrangement process. Ah-
mad et al. [22] proposed an enhanced K-means cluster-
ing algorithm for mixed numeric and categorical data
based on co-occurrence of the values. An algorithm
called KGA [23] was proposed using the genetic algo-
rithm. This method may not produce fine results when-
ever the number of clusters is unknown. An improved
version of K-means called K*-means has been developed
in [24]. Tt is unable to deal with the noisy data. Likas
et al. [25] proposed a global K-means clustering algo-
rithm in which the clusters are formed using a global
search procedure. A recursive method is proposed by
Duda and Hart [26]. Milligan [27] developed an enhanced
algorithm based on Ward’s hierarchical method [28] that
helps in finding the initial cluster centers. The algo-
rithm proposed by Fisher [29] generates good seeds by
constructing initial hierarchical clustering based on [30]
method using MaxMin algorithm to choose a subset of
the original database as initial cluster centers. Bradley
et al. [31] formed the initial clusters based on the bilin-
ear program. Tou and Gonzales [32] presented a method
which entirely depends on the order of the points and
the threshold value. Linde et al. [33] proposed a method
based on binary splitting (BS). Here, the clusters quality
depends on the selection of a random vector. Kaufman
and Rousseeuw [34] developed a method based on the re-
duction in the distortion. Babu and Murty [35] proposed
a technique for the near optimal seed selection based on
genetic programming. This is not robust for large data
bases. Huang and Harris [36] projected a method called
direct search binary splitting (DSBS) based on the prin-
cipal component analysis (PCA) and the vector of Linde
et al. [33]. Thiesson et al. [37] designed an algorithm that
depends on the mean value of the given data. Bradley
and Fayyad [38] proposed an initialization approach for
K-means using the Forgy method [39].

3. Proposed HK-means algorithm

The algorithm works well for separated clusters. Sepa-
ration means that distance of any cluster center from any
other point in that cluster should be less than distance
of that cluster center from any other cluster center. R is
specified as input and represents the degree after which
newly selected object should be checked if it lies in pre-
viously selected cluster. R = 2 will run Algorithm 1
(see Appendix) for almost all the iterations while R = 1
will not run Algorithm 1 for any selected object. The first

cluster center is chosen at a random. At any given in-
stance new cluster center is a object whose minimum
distance from the previously chosen centers divided by
the average distance between cluster centers is the max-
imum. Clearly this maximum value will be larger for
valid object i.e. object that does not lie in previously
chosen clusters and low for invalid object i.e. object that
lies in previously chosen cluster. For separated clusters it
is guaranteed that newly chosen cluster center does not
lie in previously chosen clusters. Cluster centers chosen
by this method will always lie on boundary of clusters,
and thus to refine them, single iteration of k-means is ap-
plied on data which results in partial formation of clusters
which may not be the accurate ones. Also cluster cen-
ters are recomputed so that they lie inside the clusters.
Verification process to check if two objects lie in same
cluster is as follows. Algorithm 1 is run over the m se-
lected points and value of si is found for cluster cluster,,.
st value indicates how nicely any point in cluster,, is allo-
cated to that particular cluster. In process of calculating
st cluster which is most similar to cluster,, is found and
is indicated by clusters. In second step, as illustrated
in Algorithm 2, cluster,, and clusters are merged tem-
porarily and centers are recomputed. Again Algorithm 1
is run again over new set of centers and clusters and sil
is calculated.

4. Experimental results

The proposed algorithm has been executed on MAT-
LAB R2008a on Windows 7 Home Premium 64-bit run-
ning on Intel(R) Core(TM) i5 2410M CPU @ 2.30 GHz,
with 6 GB RAM.

4.1. Synthetic data
The algorithm was applied on various two dimensional
synthetic data sets with R = 1.3 and some of the re-
sults are given below. Following are the experimental
TABLE I

si and sil values as the result of 4 or 7 iterations.

min st sl
2 — —
2.1107 - -
1.5868 - -
1.0302 0.9461 0.9871

E -
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TABLE II
si and si2 values used in third case.
min st s12
2 _ _
1.9806 - -
1.3743 - -
1.1816 0.9708 0.9284
1.0650 0.9058 0.9795

&
;
o

TABLE III
si and si1 values used in fourth case.
min st sil
2 — —
3.6115 - -
2.0598 - -
1.1875 0.9421 0.9631

-

results when the proposed algorithm was applied on four
data sets. These results included data plots of the 2-
dimensional data objects along with the table indicating
st and sil values. si and sil are calculated only when
man is less than R. Algorithm stops when si value is less
than sii value.

In general, valid object is represented by empty circle
and rejected object by a circle with cross. In case of
Table I algorithm terminates after 4th or 7th iteration
and object marked by circle with cross is rejected. First
7 objects are added to ClusterPoints and 8th object is
rejected. Tables IT and III can be similarly interpreted.

4.2. Biological data

We have experimented the proposed algorithm on var-
ious biological data sets taken from UCI machine learn-
ing repository [40]. The experimental results are shown

in Table IV. As depicted in the table, the proposed al-
gorithm has succeeded to initialize and estimate the ap-
propriate number of clusters. The estimated number of
clusters produced by the proposed algorithm for the bio-
logical datasets are also validated against K-means clus-
tering algorithm using dynamic validity index (DVT) [41]
defined as follows.

Let N be the number of data points, K be the
pre-defined upper bound number of clusters, and z; be
the centre of the cluster C;. The dynamic validity index
is given by

DVI = . min K{IntraRatio(k:) + y*InterRatio(k)},

o (1)

IntraRatio(k) = %7 InterRatio(k) =
Inter(k k

ﬁrn(te)ﬁ Intra(k) = %Zi:l szci H‘T - ZiHQ’
MaxIntra = max;—12, . x(Intra(é)), and MaxInter =

max;=1,2, . ;(Inter(?)).

Initially, Algorithm 1 is applied over the selected points
and value of si is found for cluster. si value attracts
compactness within the clustrer. Then, Algorithm 2 is
applied and clusters are merged temporarily and centers
are recomputed. Again Algorithm 1 is run over different
set of centers and clusters and sil is computed. Here,
IntraRatio represents the overall compactness of clusters
and InterRatio represents overall separation of the clus-
ters. The term Intra is average distance of all the points
within a cluster from cluster centre. Then the Inter term
is composed of two parts, both of them based on cluster
centers. The value of Inter increases with the increment
in k. The less value of DVI indicates more quality of the
clusters and vice versa. The value of v in Eq. (1) rep-
resents the modulating parameter to balance the noisy
data points.

TABLE IV
Number of attributes (1), data size (2), actual (3) and
estimated (4) number of clusters and comparison of

K-means (5) with the our proposed (6) scheme using dy-
namic validity index (DVI).

Name O] @ 1 B3)]E] 6 (6)
Iris 4 150 3 3 | 1.1155 | 0.5324
Wine 13| 178 | 3 4 |0.1362 | 0.0923
St. Heart 13 | 270 2 2 1 0.2825 | 0.2011
Br. Tissue 9 106 2 2 1 0.4322 | 0.1008
P.I. Diabetes 8 | 768 | 2 2 10.7134 | 0.0645
Cloud 10 | 1024 | 2 3 | 2.8754 | 0.8637
B. Transfusion | 5 748 2 2 | 0.7747 | 0.3189
Yeast 8 | 1484 | 10 | 10 | 1.6543 | 1.0067

5. Conclusion

We have proposed a heuristic approach for estimating
the number of clusters in the given data set and finding
initial set of clusters centers in order to apply K-means
algorithm, provided that clusters are separated enough.
The main significance of the algorithm is that it runs in
linear time. However, real world data is not always sepa-
rated, future efforts can be made to extend this algorithm



HK-Means: A Heuristic Approach to Initialize and Estimate. . . 81

to random data by estimating K as a range. In proposed
algorithm, it is not guaranteed that the algorithm will
halt for all the cases. Future efforts can be put in design-
ing algorithm that can be proved to halt for all cases.
Also, future endeavors will be made to give K value as a
range when separation criterion is not satisfied. Efforts
can also be put to eliminate threshold value R and reduc-
ing the number of times Algorithm 1 is run so as to make
it faster. It has been shown that the proposed algorithm
estimates the number of clusters in most of the biological
datasets considered for experimentation. The results of
the proposed algorithm were evaluated in terms of the
dynamic validity index. The results have shown the ef-
fectiveness of the algorithm.

Appendix

Algorithm 1: Compute algorithm

Functions Used:
sse(objl Arrayl) - Returns mean of sum of euclidean
distances of objl from objects in Array1

Input:
A - Array of objects
B - Amray of Centres

Outpat:
ans - Positive Number

bi = sse tcentwe[m},dust&v'm);
fori=1—-m-1do
if bi > sse(centreli], clustery,) then
‘ bi = sse (centreli, clustern ) ;
5 =1i;
end
end
si = (et )

return si
Algorithm 2: Partial algorithm

Variables Used:
ClusterPoints -
cluster

Cluster -Array storing objects cluster wise
cenire - Set of cluster centres

index - Array of length N

Set of objects each belonging to different

Functions Used:

maxindexgarray) - returns Index of the Max Value in array
computecentre(arrayl ) - returns mean of array |

ssefobjl Arrayl) - Retumns mean of sum of euclidean
distances of objl from objects in Arrayl

mdist{array,0) - Returns distance of object closest o o in
array

max(§) - Retruns maximum value in set §

getindex(objl) - Retruns index of object objl
ComputeAverage{Arrayl) - Returns average value of euclidean
distance of each point to all other points of amrayl
closest{o,5) - Returns index of object closest to o in Set §

Input:
P - Array of N objects
R - Positive Number (> 1)

Output:
K - Number of Clusters
ClusterPoinis - Set of K objects ( Initial Cluster Centers)

Initialize Cluster Points as EmptySet ;
Choose a random object from new Point from P ;
m=1;
Add newPoint to Cluster Points;
repeat
Set centref] = 0:
avg = ComputeAverage(Cluster Points):
fori=1—= N do
index[i] =
1 4+ mdist (Cluster Points, P[i]) [avg:
end
i = maxIndex (index);
min = index[i]; newPeint = P[i];
Add newPeoint 1o Cluster Points and increment m:
fori=1— N do
closePoint = closest (P[i], Cluster Points) ;
j = getindex(closePoint);
Add P[i] to Cluster;:

[
fori=1—mdo
centre[i] = computecentre (cluster;):
centreli] = closest (centreli], P);
end
Cluster Points = centre;
if min is less than R then
si = compute (centre,cluster,, ) ;
fori=1-—+m-—1do

temp = sse (centreli], clustery ) ;

if bi is grearer than remp then

| bi=temp, s =1;

end
end
Merge cluster,, and cluster, into clusterp,;
centre[m| = computecentre (clusterm) ;
sil = compute (centre — centre|s|,clustery,) ;

end
until si > sil;
return m,clusterPoinis;

References

[1] J. Han, M. Kamber, Data Mining: Concepts
and Techniques, 2nd ed., Morgan Kaufmann Publ.,
Waltham, USA 2006.

[2] M. Castelnovi, P. Musso, A. Sgorbissa, R. Zaccaria,
in:  Proc. IEEE Int. Symp. on Computational In-
telligence in Robotics and Automation, Vol. 1, 2003,
p. 229.

[3] P.K. Chang, Wen Chen, Jiebo Luo,
Image Process. 7, 1673 (1998).

[4] A. Jain, R. Duin, J. Mao, IEEE Trans. Pattern Anal.
Machine Intellig. 22, 4 (2000).

[5] N. Srinivasan, V. Vaidehi, in: Proc. BroadNets 2005,
2nd Int. Conf. on Broadband Networks, Vol. 2, 2005,
p. 1007.

[6] D. Aloise, A. Deshpande, P. Hansen, P. Popat, Ma-
chine Learning 75, 245 (2009).

J. Computat. Appl. Math. 20, 53

IEEE Trans.

[7] J. Rousseeuw,
(1987).

[8] J.B. MacQueen, in: 5th Berkeley Symp. on Math-
ematical Statistics and Probability, Vol. 1, University
of California Press, Berkeley, CA 1967, p. 281.

[9] M.D. Berg, O. Cheong, M.V. Kreveld, M. Overmars,
Computational Geometry: Algorithms and Applica-
tions, 3rd ed., Springer-Verlag, Berlin 2008.

[10] L. Galluccio, O. Michel, P. Comon, A.O. Hero, Sign.
Process. 92, 1970 (2012).


http://dx.doi.org/10.1109/CIRA.2003.1222094
http://dx.doi.org/10.1109/CIRA.2003.1222094
http://dx.doi.org/10.1109/83.730379
http://dx.doi.org/10.1109/83.730379
http://dx.doi.org/10.1109/34.824819
http://dx.doi.org/10.1109/34.824819
http://dx.doi.org/10.1109/ICBN.2005.1589714
http://dx.doi.org/10.1109/ICBN.2005.1589714
http://dx.doi.org/10.1007/s10994-009-5103-0
http://dx.doi.org/10.1007/s10994-009-5103-0
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1016/j.sigpro.2011.12.009
http://dx.doi.org/10.1016/j.sigpro.2011.12.009

82

[11]
[12]
[13]
[14]
[15]

[16]
[17]

18]
[19]
[20]
[21]
122]
23]
[24]
[25]

[26]

D. Reddy Edla, V. Gondlekar, V. Gauns

A K. Jain, Pattern Recogn. Lett. 31, 651 (2010).

T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Pi-
atko, R. Silverman, A.Y. Wu, IEEFE Trans. Pattern
Anal. Machine Intellig. 24, 881 (2002).

Z. Du, Y. Wang, Z. Ji, Computat. Biol. Chem. 32,
243 (2008).

J.Z.C. Lai, Y.C. Liaw,
(2008).

J.Z.C. Lai, T.J. Huang, Y.C. Liaw, Pattern Recogn.
42, 2551 (2009).

K.R. Zalik, Pattern Recogn. Lett. 29, 1385 (2008).
S.J. Redmond, C. Heneghan, Pattern Recogn. Lett.
28, 965 (2007).

F. Cao, J. Liang, G. Jiang,
58, 474 (2009).

Pattern Recogn. 41, 3677

Comput. Math. Appl.

S.S. Khan, A. Ahmad, Pattern Recogn. Lett. 25,
1293 (2004).

J.F. Lu, J.B. Tang, Z.M. Tang, J.Y. Yang, Pattern
Recogn. Lett. 29, 787 (2008).

D.X. Chang, X.D. Zhang, C.W. Zheng, Pattern

Recogn. 42, 1210 (2009).
A. Ahmad, L. Dey, Data Knowledge Eng. 63, 503

(2007).

S. Bandyopadhyay, U. Maulik, Inform. Sci. 146,
221 (2002).

Y.M. Cheung, Pattern Recogn. Lett. 24, 2883
(2003).

A. Likas, N. Vlassis, J.J. Verbeek, Pattern Recogn.
36, 451 (2003).

R.O. Duda, P.E. Hart, Pattern Classification and
Scene Analysis, Wiley, New York 1973.

[27]
(28]

[29]
[30]
[31]
[32]
[33]

[34]

[35]
[36]
37]
[38]
[39]
[40]

[41]

G.W. Milligan, Psychometrika 45, 325 (1980).

J.H. Ward, Jr., J. Am. Statist. Assoc. 58, 236
(1963).
D. Fisher, J. Artif. Intellig. Res. 4, 147 (1996).

D.H. Fisher, Machine Learn. 2, 139 (1987).

P.S. Bradley, O.L. Mangasarian, W.N. Street, in:
10th Annual Conf. on Advances in Neural Informa-
tion Processing System, USA, 1996, Vol. 9, p. 368.

J. Tou, R. Gonzales, Pattern Recognition Principles,
Addison Wesley, Massachusetts 1974.

Y. Linde, A. Buzo, R.M. Gray, IEEE Trans. Com-
mun. 28, 84 (1980).

L. Kaufman, P.J. Rousseeuw, Finding Groups in
Data — An Introduction to Cluster Analysis, Wiley,
Canada 1990.

G.P. Babu, M.N. Murty,
763 (1993).

C. Huang, R. Harris, IEEFE Trans. Image Process 2,
108 (1993).

B. Thiesson, B. Meck, C. Chickering, D. Heckerman,
Microsoft Technical Report (MSR-TR-97-30), 1997.
P.S. Bradley, U.M. Fayyad, in: 15th Int. Conf. on
Machine Learning (ICML-1998), Wisconsin (USA),
1998, p. 91.

E. Forgy, Biometrics 21, 768 (1965).

UCI Machine Learning Repository, archive.ics.
uci.edu/ml/datasets.html.

J. Shen, S.I. Chang, E.S. Lee, Y. Deng, S.J. Brown,
Appl. Math. Comput. 169, 1172 (2005).

Pattern Recogn. Lett. 14,


http://dx.doi.org/10.1016/j.patrec.2009.09.011
http://dx.doi.org/10.1109/TPAMI.2002.1017616
http://dx.doi.org/10.1109/TPAMI.2002.1017616
http://dx.doi.org/10.1016/j.compbiolchem.2008.03.020
http://dx.doi.org/10.1016/j.compbiolchem.2008.03.020
http://dx.doi.org/10.1016/j.patcog.2008.06.005
http://dx.doi.org/10.1016/j.patcog.2008.06.005
http://dx.doi.org/10.1016/j.patcog.2009.02.014
http://dx.doi.org/10.1016/j.patcog.2009.02.014
http://dx.doi.org/10.1016/j.petrec.2008.02.014
http://dx.doi.org/10.1016/j.patrec.2007.01.001
http://dx.doi.org/10.1016/j.patrec.2007.01.001
http://dx.doi.org/10.1016/j.camwa.2009.04.017
http://dx.doi.org/10.1016/j.camwa.2009.04.017
http://dx.doi.org/10.1016/j.patrec.2004.04.007
http://dx.doi.org/10.1016/j.patrec.2004.04.007
http://dx.doi.org/10.1016/j.patrec.2007.12.009
http://dx.doi.org/10.1016/j.patrec.2007.12.009
http://dx.doi.org/10.1016/j.patcog.2008.11.006
http://dx.doi.org/10.1016/j.patcog.2008.11.006
http://dx.doi.org/10.1016/j.patcog.2008.11.006
http://dx.doi.org/10.1016/j.patcog.2008.11.006
http://dx.doi.org/10.1016/S0020-0255(02)00208-6
http://dx.doi.org/10.1016/S0020-0255(02)00208-6
http://dx.doi.org/10.1016/S0167-8655(03)00146-6
http://dx.doi.org/10.1016/S0167-8655(03)00146-6
http://dx.doi.org/10.1016/S0031-3203(02)00060-2
http://dx.doi.org/10.1016/S0031-3203(02)00060-2
http://dx.doi.org/10.1007/BF02293907
http://dx.doi.org/10.2307/2282967
http://dx.doi.org/10.2307/2282967
http://dx.doi.org/10.1023/A:1022852608280
http://dx.doi.org/10.1109/TCOM.1980.1094577
http://dx.doi.org/10.1109/TCOM.1980.1094577
http://dx.doi.org/10.1016/0167-8655(93)90058-L
http://dx.doi.org/10.1016/0167-8655(93)90058-L
http://dx.doi.org/10.1109/83.210871
http://dx.doi.org/10.1109/83.210871
archive.ics.uci.edu/ml/datasets.html
archive.ics.uci.edu/ml/datasets.html
http://dx.doi.org/10.1016/j.amc.2004.10.076

