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Predictions for the transmission of genetic traits along to generations are an important process for patients,
their family and genetic counseling. For this purpose, Bayesian analysis in which one can include a priori knowledge
taking into account all relevant information into the problem could be a useful tool to examine how disease
forecasting affects its probability so that it provides a more straightforward interpretation of predictions. Therefore,
we investigate here transmissions of autosomal recessive diseases along to generations within Bayesian framework.
In order to do that we develop a computer code that is useful to facilitate genetic transition matrices to forecast
predictions of probabilities of transmission of genetic traits by using Mathematica software, well known as an
algebraic manipulation language. Furthermore, the symbolic implementation of the code is applied for the cystic
fibrosis disease forecasting in humans genetics. All results show that Bayesian analysis plays a central role of
prediction for probabilities of transmissions of genetic traits along generations for cystic fibrosis disease or other
autosomal recessive disorders.
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1. Introduction

Mendel’s laws, related to the transmission of genes
along generations, are actually a kind of axioms of clas-
sical probability in genetics. Therefore comprehending
these probability axioms facilitates that Mendel’s stud-
ies on genetics can easily be understood. By using these
laws, quantifying of the risks of diseases for individuals
can be done according to prior knowledge of their fam-
ily pedigree and genetic process of disease being consid-
ered [1]. This was only first used in 1950’s or 60’s in
problems of medical diagnosis and therapy planning [2]
and then, in recent years, improved with use of statisti-
cal analysis based on Bayesian logical inferences, origi-
nally stated by Bayes [3–5]. It provides a more straight-
forward interpretation of predictions and has been em-
ployed in many genetic areas, such as classification of
genotypes and estimating their relationships [6], popu-
lation genetics [7, 8], gene ordering [9, 10], human-risk
analysis [11, 12] and also plant disease prediction [13, 14].

The use of pedigree analysis is important for analyz-
ing inheritance of traits in human and animal popula-
tions [15, 16]. Its goals are firstly to determine mode
of inheritance such as dominant, recessive, partial dom-
inance, sex-linked, autosomal, mitochondrial and mater-
nal effect. Secondly, it is used to calculate the proba-
bility of an affected offspring for a given genetic cross.
There are some methods that have already been used in
estimating probabilities of human diseases. In this con-
text, Boehnke and Moll [17] demonstrated that the use of
maximum likelihood methods is effective for identifying
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pedigrees segregating at a major locus for a quantita-
tive trait; Lalouel and Morton [18] also introduced nat-
ural log likelihood for autosomal dominant disease and
Farrer and Couples [19] suggested Bayesian probability
approach to estimate probability for major gene of the
Alzheimer disease in a particular family and compared it
with maximum likelihood approaches. Although Ogino
et al. [11, 12], taking into account various scenarios, il-
lustrate Bayesian methods for calculating genetic risks
when different mutation panels are used for the parents
and the fetus we extend it for not only parents and fetus
but also son, grandson and so on. On the other hand,
Shoemaker et al. [20], Stansfield and Carlton [21], Carl-
ton [22] and the others have already discussed about us-
ing classical and Bayesian probability analysis in the field
of genetics, but there is a lack of work about predicting of
probability of transmission of autosomal recessive traits
along to generations and computational problems in real-
world risk analysis associated with situations that are
only hypothetical.

In this paper, we study a special kind of stochastic pro-
cess called a Markov chain, where the outcome of genetic
crossing of traits depends only on that of the previous one
and used it to create transmission probability vector of
traits in a given generation. By using this vector, we pre-
dict posterior probability of transmission of genetic traits
under some assumptions. Therefore, we develop a Math-
ematica code that is used for predicting the probability of
transmissions of cystic fibrosis (CF) disease [23–25] along
to generations within Bayesian framework with Markov
chain.

2. Bayesian logical inferences

Bayesian logical inference task is to infer the probabil-
ity for the hypothesis H, given some data D from experi-
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ment and capturing also all relevant information I. This
can be done within the setting of Bayes’ theorem which
states

p(H|D, I) =
p(D|H, I)p(H|I)

p(D|I)
. (1)

In this equation, the quantity p(D|I) is a global likeli-
hood for entire class of H or evidence given some infor-
mation I. The quantity p(D|H, I) is called likelihood
of H, which measures or determines a probability of ob-
servations D, or the statistic under the hypothesis being
tested. The quantity p(H|I) is known as a prior prob-
ability distribution function (PDF) of H in the absence
ofD and the quantity p(H|D, I) is a posterior PDF ofH,
which is a compromise between the prior information and
the data. More details and references about Bayesian ap-
proach can be found in papers [26–30].

3. Pedigree analyses

Pedigree helps us infer whether a trait from a single
gene is dominant or recessive so that it is used to study
inheritance of a visible trait that shows differences in indi-
viduals, such as hairstyle, tongue rolling, blood type, fur,
skin or hair color. Pedigree diagrams shown in Figs. 1–2
indicate effects of hereditary characteristics of living or-
ganisms among generations represented by the symbolGi

whose rows indicate generations and columns single-locus
ordered genotypes of offsprings, defined by G = (Gij),
(i = 1, 2, ..., n + 1, j = 1, 2) [2, 3, 31, 32].

Fig. 1. Incomplete genetic pedigree for monohybrid
crosses of G(n+1)2.

In genetic science, combinations of genes on chromo-
somes of reproductive cells are known as “genetic crosses”,
defined as a conscious breeding of two different individu-
als resulting in offspring that carries a portion of genetic
material of both parents. Hence, let us suppose that a
single gene controls the hair length of a hamster. Then,
a short hair is governed by a dominant gene and repre-
sented by L while a long hair by a recessive gene and
represented by l. Therefore, a hamster will be phenotyp-
ically short haired unless its genotype is (ll). Figure 1
shows a possible genetic pedigree which contains squares

Fig. 2. Incomplete genetic pedigrees for multi-hybrid
crosses of G(n+1)2.

and circles denoted as a male and female, respectively.
At the first generation G1, both of parents are known to
be phenotypically short haired and G11 is being genet-
ically heterozygous (Ll). Genotypes of offsprings (Gi2)
are short haired, but their genotypes are incompletely
known (L?).

Given that Gi1’s are carriers and G(n+1)2 has a short
hair, we would like to ask what is the probability that
G(n+1)2 is being genotypically heterozygous Ll? In or-
der to answer this question, let us define H = {hi}ki=1,
where k is a number of hypotheses, E and I represent
hypotheses of offspring’s genotypes {LL,Ll, ll}, certain
evidence and background information or genetic context,
respectively. In this respect, our context I that repre-
sents the genotypes of parents G11 and G12 are initially
known certainly as to be heterozygous short haired (Ll)
and homozygous short haired (LL); our evidence E is
that Gi2(i = 2, ...) is short haired and our hypothesis
h2 is that Gi2’s are heterozygous short haired (Ll). Then
Eq. (1) turns into the following form:

p(h2|E, I)=
p(h2|I)p(E|h2, I)

p(E|I)

=
p(h2|I)p(E|h2, I)
m∑
i=1

p(hi|I)p(E|hi, I)
. (2)

In order to calculate the probabilities in Eq. (2) we use
matrices whose components indicate probabilities of ge-
netic crosses of traits. In this context, a relationship be-
tween the probabilities of the offspring’s genotypes and
that of its parents can be modeled using transition matri-
ces used in the Markov chains. Therefore, the transition
matrix A whose components are the probability values
of outcomes of genotypes by crossing G11 with LL, Ll,
and ll is given in Table I.

On the other hand, let x represent the prior probabil-
ities of hypothesis {hi}ki=1 of genotypes {LL,Ll, ll}, so
that initially, x0 = [1, 0, 0]

T because G12 is given as LL
genotype in Fig. 1. After one generation,

x1 = Ax0 =

[
1

2
,

1

2
, 0

]T
, (3)

after two generations,
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TABLE I

Probabilities of genotypes obtained by crossing
G11 with LL, Ll and ll respectively.

Ll × LL Ll × Ll Ll × ll
p(LL) 1/2 1/4 0
p(Ll) 1/2 1/2 1/2
p(ll) 0 1/4 1/2

x2 = Ax1 = A2x0 =

[
3

8
,

1

2
,

1

8

]T
(4)

and so on for any n (n ∈ Z+) generations we obtain

xn = Anx0 =

[
1

4
+

1

2n+1
,

1

2
,

1

4
− 1

2n+1

]T
. (5)

In the limiting case, xn implies that when a population of
hamster is crossed with a heterozygous hamster, the ratio
of genotypes of offsprings becomes 1:2:1. If our hypoth-
esis h2 is correct, G(n+1)2 is automatically short haired,
because it is dominant so that the likelihood of hypothesis
d = {p(E|hi, I)}ki=1 would be p(E|h1, I) = p(E|h2, I) =
1 and p(E|h3, I) = 0, respectively. By using Eq. (2) the
normalization constant p(E|I) = xn · d and the prior
probability of h2, p (h2|I) = 1/2, then the posterior PDF
of h2 given in Eq. (2) takes the following form:

p(h2|E, I) =
2n

3× 2n−1 + 1
. (6)

It can be seen that p(h2|E, I) approaches to 2/3 as
n→∞ and imply that under assumptions about parents
and all crossings with heterozygous Ll an individual born
after n-th generation is likely to be heterozygous shortly
haired with a probability of two-thirds. In Eq. (5), it is
required to calculate high powers of matrix A. There-
fore, we can use similarity transformation to diagonalise
the matrix A and then take high powers of A easily [33]:

xn = Anx0 = P∆nP−1x0, (7)
where ∆ is a diagonal matrix whose diagonal entries are
eigenvalues of A and P is a matrix whose columns are
linearly independent eigenvectors of A corresponding to
its eigenvalues.

Let us assume that we have m different traits denoted
as {T1, T2, ..., Tm} shown in Fig. 2.

Following previous pedigree results, obtaining the
probability of their transmissions of m different traits
after n generation in Bayesian framework suffer from
computational difficulties of An because the dimensions
of A (3m × 3m) becomes large. For example, if m = 2
we get

A =

 A1 A2 0

A1 A1 A1

0 A2 A1

 , (8)

where

A1 =

 1/4 1/8 0

1/4 1/4 1/4

0 1/8 1/4

 , A2 =

 1/8 1/16 0

1/8 1/8 1/8

0 1/16 1/8



and 0 is a (3× 3) dimensional zero matrix. In order
to overcome this problem we develop a symbolic code in
Mathematica that has the flexibility and may easily cover
any dimension of transition matrices. Either using this
code or mathematical induction [34] we obtain,

p(h2|E, I) =

(
2n

3

)m
1

(2n−1 + 3−1)
m , (9)

under the previous assumptions [35].

4. Simulations

In previous sections we describe the use of transi-
tion matrices for determining various genetic inheritance
probabilities for a simple dominant trait of hamsters, but
this is a trivial application. Extension of this study in any
real application could be more interesting. In this con-
text, it will be started to predicting cystic fibrosis (CF)
disease for evaluating its performance on real-world data
in Bayesian framework. CF [36–38] is one of the most
common, inherited, single-gene disorders in populations
white Caucasian descent, such as those of Europe, North
America and Australasia [37]. It is caused by mutations
in CF transmembrane conductance regulator (CFTR)
gene found in cells that line the lungs, digestive tract,
sweat glands, and genitourinary system [36, 37]. In that
disease, the mucus lining the respiratory and gastroin-
testinal tracts are extremely thick so that it makes in-
dividuals with this disease fight infections or absorb nu-
trients. CF patients are expected to die within the first
years of life. Their life expectancy has lengthened with
advances in diagnosis and treatment and is currently
about 38 years for them [39].

TABLE IIFamily history of disease.

Person Mutat. Genotype
grandfather (father side) null unaff., not carr. (CC)
grandmother (father side) δf508 unaff., carr. (Cc)
grandfather (mother side) null unaff., not carr. (CC)
grandmother (mother side) g542x unaff., carr. (Cc)

father δf508 unaff., carr. (Cc)
mother g542x unaff., carr. (Cc)

aunt (mother sister) g542x unaff., carr. (Cc)
uncle null unaff., not carr. (CC)
Ahmet CF dis. affected (cc)

On the basis of above information, we consider here
proving a versatility of our proposed method through
application to various common genetic counseling sce-
narios. Therefore, a family history of CF patient sum-
marized in Table II is obtained by using genetic car-
rier test [11, 12, 40] which is a blood test and deter-
mines whether or not a carrier of the defective gene that
causes CF and provided by Division of Pediatric Pul-
monology of Marmara University. Let C represent the
allele which codes for absence of the CF disease and c its
existence. The vector of prior probabilities of hypothesis
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TABLE III

Genetic testing information depends on ethnicity for cys-
tic fibrosis disease.

Ethnicity Carrier CF carrier testing
frequency detection rate

Caucasian 1/25 90%
Ashkenazi Jewish 1/25 97%
African American 1/65 69%

Hispanic 1/46 57%
Asian 1/94 49%

Fig. 3. A pedigree of a family with individual affected
with cystic fibrosis disease.

H = {Hi}3i=1 whereH2 represents offspring’s being a car-
rier CF but not affected (CC), H1 represents offsprings
being a carrier CF (Cc) and H3 represents affected CF
(cc) in a human population.

The CF disease is caused by homozygous mutations,
such as ∆F508 and G542X in the CFTR gene [40, 41]
given in Table II. However, the most common mutation
among them is the one denoted as ∆F508 whose fre-
quency varies with different ethnic groups (it accounts
approximately for 70% of Northern European ances-
try [40]). A pedigree diagram including all family mem-
bers is drawn from Table II and illustrated in Fig. 3.
Given the genetic context that Ahmet is a CF patient
and all crossings with him and next generations after
him are assumed to be Caucasian that is not affected by
phenotypical CF disease, what are the probabilities that
his child, grandson and so on are being genetically either
heterozygous or homozygous?

If both parents are carriers, then each of their children
has a 25% chance of being disorder. Therefore it is said
that the probability of Ahmet being CF disease is 25%.
Let us reconsider crossing with CC, Cc and either CC
or Cc as mentioned previously. Since a crossing with cc
contradicts our hypothesis, it is removed. In the case
of absence of a family history the husband’s prior car-
rier risk is approximately 1/25 that is given in Table III
since he is a Caucasian. In a similar way, the transition
matrix A is recalculated so that the frequency values of
n-th generations xn are obtained and shown in Table IV.
It is seen that any person of family crossed with CC, Cc
and either Cc or CC results CF disease disappears grad-
ually as n increases. Let us consider another hypothesis,
namely H2, that Gi1 is unaffected, but not a CF car-
rier (CC). In this case, taking values of xn in Table IV
and putting into Eq. (2) values of p(Hj |E, I), (j = 1, 2)
are obtained and shown in Table V.

TABLE IV

The frequencies versus generations in different crosses with genotypes of offsprings belonging to Ahmet.

Generations xn

n Crossing with CC Crossing with Cc Crossing with CC or Cc
1 [0, 0.24, 0]T [0, 0.005, 0.005]T [0, 0.1225, 0.0025]T

2 [0.0576, 0.0576, 0]T [0.000025, 0.000075, 0.00005]T [0.0150, 0.0156, 0.0003]T

3 [0.0276, 0.0138, 0]T [5×10−7, 1.25×10−6, 6.25×10−7]T [0.0037, 0.0020, 0.00003]T

...
...

...
20 [7.64×10−12, 4.02×10−13, 0]T [5.54×10−38, 1.10×10−37, 5.54×10−38]T [3.56×10−17, 5.87×10−18, 1.05×10−19]T

In case of three crossings, p(H1|E, I) would decrease as
n increases and asymptotically approaches 0, 0.66, and
0.14, respectively. It can clearly be seen in Fig. 4. As ex-
pected, the values of p(H1|E, I) obtained by crossing
with either CC or Cc lie between those obtained by cross-
ing with CC and Cc, respectively. However, p(H2|E, I)
would increase as n increases and asymptotically ap-
proaches 1, 0.33 and 0.86. It is illustrated in Fig. 4.
Moreover, it is seen that posterior PDFs of hypotheses

have a threshold about 5th generation at all crossings
and reach equilibrium level after it and then carry on
the same level. Although the posterior PDF of hypothe-
sis H1 approaches zero at crossing with CC since c gene
would decrease as generation number increases, the pos-
terior PDF of hypothesis H2 approaches one at cross-
ing with CC since C gene would increase as generation
number increases. On the basis of the hypothesis H1 it is
said that the probability of next generation with a carrier
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TABLE V

Posterior PDFs of two hypotheses for different crosses with genotypes of offsprings belonging to Ahmet.

Generations Crossing with CC Crossing with Cc Crossing with CC or Cc
1 p(H1|E, I) p(H2|E, I) p(H1|E, I) p(H2|E, I) p(H1|E, I) p(H2|E, I)
1 1 0 1 0 1 0
2 0.5 0.5 0.75 0.25 0.51 0.49
3 0.33 0.66 0.69 0.307 0.35 0.649
...

...
...

...
...

...
...

20 0.05 0.95 0.66 0.33 0.1413 0.858

of CF disease would approach zero but, the probability of
next generation with unaffected, not a CF carrier, would
reach to one, on the basis of the hypothesis H2.

Fig. 4. Posterior PDFs of hypothesis H1 and H2 for
Table V. Generation number: uH2 — crossing with CC,
uH1 — crossing with CC, cH2 — crossing with Cc,
cH1 — crossing with Cc, aH2 — crossing with CC or Cc,
aH1 — crossing with CC or Cc.

5. Conclusions

In this study, we consider prediction of probability of
transmission of genetic traits from generation to gener-
ation within a Bayesian framework. In this context, we
provide a theoretical analysis of genetic crosses of breed-
ing individuals in general and develop a symbolic Math-
ematica code that offers a promising of a systematic way
for calculating posterior probability of hypothesis about
genetic crossing of traits. The results obtained from the
trivial experiment are used to predict the trend of trans-
mission of autosomal recessive disease in human popula-
tion, especially CF disease, using family information and
genetic test results. Under assumptions that the genetic
context that any person is a CF patient and all crossings
with him/her and next generations after him/her are not
affected by phenotypically CF disease, the probabilities
that his child, grandson and so on are being genetically ei-
ther heterozygous or homozygous reach equilibrium level
and then carry on the same level. Note also that the
prior and conditional probabilities often depend on eth-
nicity. All of the results indicates that Bayesian analysis
plays a central role in predicting probability of transmis-
sions of CF or other autosomal recessive disorders along

to generations as accurate as possible, using all available
information from pedigree and/or from genetic testing.
Moreover, the symbolic code in Mathematica helps us to
extend to any size of transmission matrices and to cal-
culate posterior probabilities so that it is applicable to
many common scenarios generating not only a fetus but,
also offsprings along generations for crossing with their
different genotypes. Therefore, it deserves further inves-
tigating genetic risk assessment of autosomal recessive
diseases in a variety of common clinical scenarios.
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