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Historically, the first boundary conditions to be formulated and used in the theory of ferromagnetic thin
films, the Rado–Weertman (RW) conditions, have a general advantage of being a simple differential equation,
2Aex

∂m
∂n

− Ksurfm = 0. A key role in this equation is played by the phenomenological quantity Ksurf known as
the surface anisotropy energy density; Aex denotes the exchange stiffness constant, and m is the amplitude of the
transverse component of dynamic magnetization. In the present paper we use a microscopic theory to demonstrate
that the surface anisotropy energy density of a thin film is directly related with its free-energy density, a fact
not observed in the literature to date. Using two local free-energy densities F surf and F bulk, defined separately
on the surface and in the bulk, respectively, we prove that Ksurf = d

(
F surf − F bulk

)
, where d is the lattice

constant. The above equation allows to determine the explicit configuration dependence of the surface anisotropy
constant Ksurf on the direction cosines of the magnetization vector for any system with a known formula for the
free energy. On the basis of this general formula the physical boundary conditions to be fulfilled for a fundamental
uniform mode and surface modes to occur in a thin film are formulated as simple relations between the surface
and bulk free-energy densities that apply under conditions of occurrence of specific modes.
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The Rado–Weertman (RW) boundary equation is the
earliest boundary condition to have been proposed in the
theory of thin-film magnetism [1, 2] with the aim of tak-
ing into account the specific dynamics of motion of the
surface magnetization, as distinct from that of the bulk
magnetization. The RW equation is based on a contin-
uum model of magnetization and in the circular approx-
imation reads

2Aex

(
∂m

∂n

)
surf

−Ksurf (ϑ, ϕ)msurf = 0, (1)

where m is the amplitude of the transversal (dynamic)
component of the magnetization, Aex is the exchange
stiffness constant, n denotes the direction normal to the
surface of the film, Ksurf (ϑ, ϕ) is the surface anisotropy
energy density, and magnetization angles ϕ and ϑ are az-
imuth and polar angles, respectively. The RW Eq. (1) is
mostly used for the description of two extreme situations,
defined by the conditions:(

∂m

∂n

)
surf

= 0, or msurf = 0. (2)

The first condition (2) implies zero surface anisotropy
constant, Ksurf (ϑ, ϕ) ≡ 0; this is considered to corre-
spond to completely unpinned surface spins. The ful-
fillment of the other condition (2) requires that
|Ksurf (ϑ, ϕ) | → ∞, and an infinite value of the surface
anisotropy constant is considered to result in a situation
in which surface spins are completely pinned.
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We will now show that the differential form of the
RW equation written above is equivalent to the micro-
scopic boundary equation derived within the surface in-
homogeneity (SI) model; the latter is based on a discrete
model of magnetization and has the form of difference
equation [3, 4]:

Asurfm0 = m−d, (3)
where m0 ≡ msurf is the surface amplitude of the
transversal (dynamic) magnetization component m, and
m−d is its analytical continuation beyond the surface, de-
noting the amplitude in the first fictitious layer parallel to
the surface, separated from it by one lattice constant d.
On putting(

∂m

∂n

)
surf

≡ 1

d
(m−d −m0) ; m0 ≡ msurf , (4)

we can rewrite the differential Eq. (1) in the difference
equation form

m0

[
1 +

Ksurf (ϑ, ϕ)

2Aex/d

]
= m−d, (5)

equivalent to Eq. (3) with the surface pinning parame-
ter Asurf given as

Asurf = 1 +
Ksurf (ϑ, ϕ)

2Aex/d
. (6)

Note, on the other hand, that we have previously [3–5]
expressed this surface parameter in the frame of the SI
model by the following equation:

Asurf = 1− d

2Aex/d

(
Ksurf

eff ·M
)
, (7)

where Ksurf
eff means the effective surface anisotropy field

acting additionally on surface spins, M is a sample mag-
netization, and d is a lattice constant.
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By comparing (7) and (6) we find that the RW surface
anisotropy constant is related with the effective surface
anisotropy field by the equation
−Ksurf (ϑ, ϕ) = d

(
Ksurf

eff ·M
)
. (8)

However, we have defined the effective surface anisotropy
field as the difference between the effective magnetic
fields on the surface and in the bulk of a thin film:
Ksurf

eff ≡ Hsurf
eff − Hbulk

eff ; considering this and the fact
that the free-energy density is defined as F = −M ·Heff ,
we can rewrite the relation (8) as

Ksurf (ϑ, ϕ) = d
[
F surf − F bulk

]
, (9)

where F bulk and F surf denote the bulk and surface free-
energy densities, respectively. By the above-derived for-
mula (9) the RW equation acquires a general character,
becoming suitable for studying the configuration effects
contained explicitly in the dependence Ksurf (ϑ, ϕ).

Thus, by Eq. (9) we have related the anisotropy con-
stant Ksurf (ϑ, ϕ) figuring in the RW equation to the
free energy of the system, a quantity we are gener-
ally able to determine for a studied thin film. For-
mula (9) allows to present explicitly the dependence of
the surface anisotropy on the magnetization direction,
i.e., on the spherical angles ϑ and ϕ, which is an ex-
tremely important information in the study of surface
effects. Also, with Eq. (9) we easily get an insight into
the physical sense of the RW boundary conditions de-
scribed by Eq. (1). For example, by Eq. (9) the ful-
fillment of the first condition (2)

(
∂m
∂n

)
surf

= 0, implies
F surf = F bulk, which corresponds to the particular situa-
tion that we have named the natural pinning (Asurf ≡ 1,
see Eq. (6)). In this situation surface spins only feel ener-
getically the natural lack of that part of their neighbors
of which they have been deprived by the formation of
the surface, and do not experience at all the influence
of the surface anisotropy field. This interpretation re-
sults from the way in which formula (7) is derived in the
SI model: the breaking of the interaction between the
surface spins and their eliminated neighbors is contained
in the “unity” in Eq. (7), whereas all other surface per-
turbations are contained in the anisotropy field Ksurf

eff .
The natural pinning is a reference point with respect
to which we consider other surface spin pinning situa-
tions. When Ksurf (ϑ, ϕ) > 0 (i.e. Asurf > 1), we say
that surface spins are unpinned; when Ksurf (ϑ, ϕ) < 0
(Asurf < 1), the freedom of surface spins is constrained,
and therefore we say they are pinned. The fulfillment of
the second condition (2) corresponding to the complete
pinning msurf ≡ 0, is, by Eq. (9), only possible when the
surface free-energy density is much greater than the bulk
free-energy density, F surf � F bulk.

Now, let us have a look at an example of expansion
of the surface anisotropy energy density Ksurf (ϑ, ϕ) into
a series of anisotropy components with the aid of Eq. (9),
which we will apply to a cubic crystal.

The free energy of a sample is expressed as a series of
terms related to different symmetries; usually the series
is limited to low-order terms related to the cubic and uni-

axial symmetries. In this equation the terms of the series
are expressed by the coordinates nx, ny and nz of the unit
vector M̂ ≡M/M oriented along the magnetization M
of the sample nx = cosϕ sinϑ, ny = sinϕ sinϑ, and
nz = cosϑ, where the angles ϕ and ϑ are measured with
respect to the [100] and [001] axes, respectively [6, 7].
The equation reads

F (M̂) = F0 +Kc1

(
n2
xn

2
y + n2

xn
2
z + n2

yn
2
z

)
−K[001]n

2
z −K[100]n

2
y, (10)

where F0 is an isotropic term expressed by an angle-
independent constant. The cubic anisotropy is described
by the term invariant under permutation of the coor-
dinate indexes x, y and z: Kc1

(
n2
xn

2
y + n2

xn
2
z + n2

yn
2
z

)
,

where Kc1 is a first-order cubic energy density coefficient.
Along with the cubic anisotropy different types of uniax-
ial anisotropy originating in lattice strains are described
by the last two terms of Eq. (10). The term −K[001]n

2
z

refers to the perpendicular-to-plane uniaxial anisotropy
energy, while the term −K[100]n

2
y refers to the in-plane

uniaxial anisotropy along the main crystal axes. Using
Eqs. (9) and (10) we obtain

Ksurf (ϑ, ϕ)=d
(
Ksurf

c1 −Kbulk
c1

) (
n2
xn

2
y+n2

xn
2
z+n2

yn
2
z

)
+d
(
Kbulk

[001]−K
surf
[001]

)
n2
z+d

(
Kbulk

[100]−K
surf
[100]

)
n2
y. (11)

Considering that (nx, ny, nz) are the direction cosines of
the magnetization M with respect to the principal crys-
tal axes, Eq. (11) reveals the angular configuration de-
pendence of the pinning coefficient Ksurf (ϑ, ϕ) figuring
in the Rado–Weertman equation. A major advantage
of Eq. (9) we have derived above is that by using an ex-
pression for the free energy in this equation we will obtain
full information on the angular configuration dependence
of the surface pinning, as is demonstrated by Eq. (11).
Note that this information was not provided directly by
the initial boundary Eq. (1) alone since it contained the
surface anisotropy energy density Ksurf (ϑ, ϕ) expressed
by the unspecified effective surface anisotropy fieldKsurf

eff .
In this context it is particularly important to relate the
surface pinning parameter of a material with the expres-
sion for its free energy. Note that the standard method
for the description of ferromagnetic properties of thin
films is always based on an appropriately constructed
expression for the free energy of the sample. However,
its boundary conditions are commonly formulated with
the aid of a variously defined, depending on the con-
text, quantity referred to as the surface anisotropy, by
no means related to the basic characteristic of the bulk
material, which is its free energy.

In the present study we have managed to fill this con-
ceptual gap by finding a relatively simple bridge connect-
ing the surface free energy with the surface boundary, or
pinning, conditions.
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