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In this study, we consider a minimum-variance hedging problem in an incomplete market, in which the risky
asset is driven by the process based on non-extensive statistical mechanics and Poisson jumps. Using the stochastic
control theory and backward stochastic differential equation method, we obtain a closed-form solution for the
minimum-variance hedging policy.
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1. Introduction

We know that it is very important for investors to
accurately describe the law of asset price movement.
The asset price model based on Brownian motion has
appeared in many literatures. For example, Black and
Scholes (B–S) [1] and Merton [2] studied the prices of
financial derivatives of the underlying stock following
such a model. It is well known that the hypothesis that
the asset price changes follow Brownian motion implies
that the price changes are independent and the distri-
bution of log-returns is normal. However, several stud-
ies have shown that the distribution of empirical log-
returns does not follow the normal distribution. A num-
ber of econophysics scholars have found that asset returns
have a long-term memory characteristic in general [3–5]
and the distribution of returns usually exhibits a fat-tail
phenomenon [6–8].

In 1988, Tsallis generalized the Boltzmann–Gibbs
statistics and proposed a non-extensive statistical ap-
proach [9]. As the development of the Tsallis non-
extensive statistics, several econophysics researchers have
applied the power-law distribution characteristic of the
Tsallis statistics framework to describe the fat-tail phe-
nomenon of asset returns [10–14]. Moreover, Bor-
land [15, 16] proposed an asset price model in which
the driving noise followed a generalized Brownian motion
governed by a Tsallis distribution of index q. For q > 1,
the Tsallis distribution exhibits fat tails. For q = 1, it
coincides with a normal distribution and the standard
B–S model is recovered. However, in reality the distri-
bution of asset returns is generally asymmetric and has
significant skewness [17–19]. Therefore, the symmetric
Tsallis distribution has certain shortcomings in modeling
the skew distribution of returns. Moreover, in the field of
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finance, the jump process is generally employed to control
the skewness of the distribution of returns [20, 21].

In this paper, to accurately describe asset price pro-
cesses, we consider the fat-tail and skew phenomena of
the distribution of returns and propose an asset price
model with a Tsallis distribution of index q and the
Poisson jump, which can describe the characteristics of
long-run dependence of asset prices and the skewness of
the distribution of returns. Furthermore, the minimum-
variance hedging problem under this model is studied.
The optimal hedging problem is always an important is-
sue in the financial field. Lim [22] and Lim and Zhou [23],
using backward stochastic differential equations, stud-
ied the problem under the assumption that the asset
price process was continuous and driven by the Brow-
nian motion. Using the convex duality and projection
Theorem, Gourieroux [24], Laurent and Pham [25], and
Schweizer [26] studied that under the assumption that
the asset price process was continuous semi-martingale.
However, the literatures on the asset price model with
discontinuous processes are relatively few. Moreover,
in this paper, the market is incomplete. The methods
used to solve a minimum-variance hedging problem of
complete markets are not valid. We therefore use the
stochastic control theory and backward stochastic differ-
ential equations to solve this problem. Finally, a closed-
form solution for the minimum-variance hedging policy
is obtained.

This paper is organized as follows. In Sect. 2, we model
a price process in which the risky asset is described by the
Tsallis non-extensive statistical mechanics and Poisson
jumps. Then, we formulate the minimum-variance hedg-
ing problem as a stochastic control problem. In Sect. 3
we derive the minimum-variance hedging strategy by the
use of the stochastic control theory and find that the
optimal hedging portfolio for our model depends on the
solution of a backward stochastic differential equation.
In the final section, we summarize the paper.
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2. Market model and optimal hedging problem

Suppose that there are two types of tradable assets in
the financial market. One is a risk-free asset, called a
bond. The price B(t) of the bond follows the equation:

dB(t) = rB(t)dt; B(0) = 1, (1)
where r is the risk-free interest rate. The other is a risky
asset, called a stock. Its price S(t) satisfies the stochastic
differential equation

dS(t) = µS(t)dt+σS(t)dΩ(t)+u(t)S(t)dN(t);

S(0) = S0, (2)
where

dΩ(t) = P (1−q)/2(Ω(t))dW (t).

The probability density function P (Ω(t)) is given by
q-Gaussian distribution derived from the Tsallis nonex-
tensive statistics [27]. It can be written as

P (Ω(t), t) =
1

z(t)

[
1− β(t)(1− q)Ω(t)2

]1/(1−q)
,

z(t) =

∫ +∞

−∞
[1− (1− q)β(t)Ω(t)2]1/(1−q)dΩ(t) =

[(2− q)(3− q)ct]1/(3−q) ,

β(t) = c(1−q)/(3−q)[(2− q)(3− q)t]2/(q−3); 1 < q < 5
3
,

c =
π

q − 1

Γ 2(1/(q − 1)− 1
2 )

Γ 2(1/(q − 1))

Γ (·) is a gamma function. W (t) is a standard Brown-
ian motion. N(t) is a stochastic Poisson process with
the intensity λ. u(t) is the relative change in the
price S(t), which represents jump sizes of the prices.
Let (Ω ,F ,P) be a complete probability space. As-
sume that W (t) and N(t) are mutual independent. De-
note {Ft}t≥0 is the natural filtration generated by W (t),
{Nt}t≥0 is the filtration generated by N(t), and the fil-
tration Gt = Ft ∨ Nt represents the information avail-
able to the investor at the time t. Let H ∈ L∞(Gt) be
a random variable, which represents some liability that
the investor faces in the financial market. Let M(t) =
N(t)−λt be the compensated Poisson process, which is a
Gt-martingale (see Lemma 6.6.3 in [28]). Then, the price
process of the risky asset can be written

dS(t) = (µ+ λu(t))S(t)dt (3)

+σP (Ω(t))(1−q)/2S(t)dW (t) + u(t)S(t)dM(t).
Assume that the financial market is frictionless, and

the investor can trade continuously over a finite time hori-
zon [0, T ]. Let {πt}0≤t<T denote the amount of wealth
allocated to the risky asset at time t. {πt}0≤t<T is Gt-
predictable and

∫ t
0
πtdt < ∞. Then, the total wealth

process X(t) is
X(t) = πtS(t) + (1− πt)B(t). (4)
Suppose that the portfolio πt remains unchanged over

the small time interval [t, t + ∆t), which is reasonable.
It is because that in reality the investor can only ad-
just his strategies discretely over time and the strategy

decision is made at the beginning of the time horizon [29].
Thus, when the ∆t is sufficiently small, the change in
wealth over the small time interval [t, t+ ∆t) is

dX(t) = πtdS(t) + (1− πt)dB(t). (5)
Substituting (1) and (3) into (5), we can obtain that

the wealth X(t) satisfies the following stochastic differ-
ential equation:

dX(t) = [πt(µ+ λu(t)− r) + rX(t)]dt

+πtσP
(1−q)/2
t dW (t) + πtu(t)dM(t);

X(0) = x0. (6)
Thus, the minimum-variance hedging problem can be
written as

min
πt

E[H −X(t)]2; X(0) = x0. (7)

3. Optimal hedging portfolio
In Sect. 2, we have formulated the minimum-variance

hedging problem as a stochastic control problem. In this
section, we will show how the backward stochastic differ-
ential equation method can be used to solve the stochas-
tic control problem with jumps. Firstly, we introduce
two lemmas on the existence of solutions of backward
stochastic differential equations.

Lemma 1. The following backward stochastic differen-
tial equation

dα(t) = −α(t)

2r−

[
µ+λu(t)−r+σβ(t)P (1−q)/2

α(t)

]2
σ2P 1−q + λu2(t)

dt

+β(t)dW (t); α(T ) = 1, (8)
has a unique solution (α(t), β(t)). Moreover, there exist
two positive and finite constants 0 < c1 < c2 < ∞, such
that c1 < α(t) < c2, t ∈ [0, T ]. Finally, the stochastic
differential equation

dh(t)=−

[
σP (1−q)/2

(
µ+ λu(t)−r+σβ(t)P (1−q)/2

α(t)

)
σ2P 1−q+λu2(t)

−β(t)

α(t)

]
h(t)dW (t); h(0) = 1, (9)

also has a unique solution

h(t) = exp

(
−1

2

∫ t

0

θ2(s)ds−
∫ t

0

θ(s)dW (s)

)
, (10)

where θ(s) =
σP (1−q)/2

(
µ+λu(s)−r+σβ(s)P (1−q)/2

α(s)

)
σ2P 1−q+λu2(s) − β(s)

α(s) .
The solution h(t) is a strictly positive square integrable
martingale.

Proof of Lemma 1 It is not difficult to find that
the existence and uniqueness of the solution (α(t), β(t))
follows from the Theorem 5.1 in [30]. The existence of
two positive and finite constants 0 < c1 < c2 < ∞, such
that c1 < h(t) < c2, t ∈ [0, T ] is shown in the proof
of the same Theorem. The solution h(t) is a strictly
positive square integrable martingale following from the
Theorem 4.1 of [30].
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Lemma 2. The following backward stochastic differential equation:

dϕ(t) =

rϕ(t) +

[
µ+ λu(t)− r + σβ(t)P (1−q)/2

α(t)

] [
σβ(t)P (1−q)/2η(t) + λu(t)υ(t)

]
σ2P 1−q + λu2(t)

− η(t)β(t)

α(t)

 dt

+η(t)dW (t) + υ(t)dM(t); ϕ(T ) = H, (11)
has a unique solution (ϕ(t), η(t), υ(t)).

Proof of Lemma 2 Let

θ(t) =
σP (1−q)/2

(
µ+λu(t)−r+σβ(t)P (1−q)/2

α(t)

)
σ2P 1−q + λu2(t)

−β(t)

α(t)
, γ(t) =

u(t)
[
µ+ λu(t)− r + σβ(t)P (1−q)/2

α(t)

]
σ2P 1−q + λu2(t)

. (12, 13)

Substituting (12) and (13) into (11), then, Eq. (11) becomes
dϕ(t) = rϕ(t)dt+ η(t)[θ(t)dt+ dW (t)] + υ(t)[λdγ(t) + dM(t)]; ϕ(T ) = H. (14)

Now, we consider the following stochastic differential equation:
df(t) = −f(t−)[θ(t)dW (t) + γ(t)dM(t)]; f(0) = 1. (15)

It is not difficult to obtain that the solution of (15) is
f(t) = ξ1(t)ξ2(t),

where
ξ1(t) = −ξ1(t−)θ(t)dW (t), ξ1(0) = 1, ξ2(t) = −ξ2(t−)γ(t)dM(t), ξ2(0) = 1,

thus, we can get the solutions of ξ1(t) and ξ2(t) as follows:

ξ1(t) = exp

(
−1

2

∫ t

0

θ2(s)ds−
∫ t

0

θ(s)dW (s)

)
, ξ2(t) = exp

(∫ t

0

λγ(s)ds

)
Π0<s≤t(1− γ(s)∆N(s)).

Now, we define a probability measure Q equivalent to P on (Ω ,Gt) as follows:
dQ
dP
|Gt= f(t), P − a.s. (almost sure in probability).

Applying the Girsanov Theorem [31], we know that the process

W̃ (t) = W (t) +

∫ t

0

θ(s)ds (16)

is a G-Brownian motion under the probability measure Q and

M̃(t) = M(t) +

∫ t

0

λγ(s)ds = N(t)−
∫ t

0

λ(1− γ(s))ds (17)

is a G-martingale under the probability measure Q.
Let ϕ(t) = B(t)EQ

[
H

B(T ) | Gt
]
, then ϕ(t)

B(t) is a G-martingale under the probability measure Q.
By the use of the martingale representation theory (see [32]), we can obtain that there are unique
square integrable G-predictable processes η(t) and υ(t), which can make the square integrable
G-martingale ϕ(t)

B(t) be written as

ϕ(t)

B(t)
= EQ

[
H

B(T )

]
+

∫ t−

0

η(s)dW̃ (s) +

∫ t−

0

υ(s)dM̃(s). (18)

Using the Ito formula, we have

dϕ(t) = rϕ(t)dt+ η(t)dW̃ (t) + υ(t)dM̃(t)]; ϕ(T ) = H, (19)
where η(t) = B(t)η(t) and υ(t) = B(t)υ(t). Substituting (16) and (17) into (19), we change the probability measure
from Q back to P. Then, (19) becomes into (14). Hence, Eq. (11) has a unique solution (ϕ(t), η(t), υ(t)).

Theorem 1. Suppose that the solution (ϕ(t), η(t), υ(t)) of (11) is square integrable. Then, the minimal variance
hedging portfolio for (7) is

π(t) =
σP (1−q)/2η(t) + λu(t)υ(t) +

[
µ+ λu(t)− r + σP (1−q)/2β(t)

α(t)

]
(ϕ(t−)− x(t−))

σ2P 1−q + λu2(t)
(20)

and the optimal cost is

C∗ = α(0)(ϕ(0)− x(0))2 + E
∫ t

0

{
λυ2(t) + η2(t)−

[
σP (1−q)/2η(t) + λu(t)υ(t)

]2
σ2P 1−q + λu2(t)

}
dt
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Proof of Theorem 1 Using the Ito formula, we have

d[α(t)(ϕ(t)− x(t))2] =

{
(ϕ(t)− x(t))2

−2rα(t) + α(t)
µ+ λu(t)− r + σP (1−q)/2β(t)

α(t)

σ2P 1−q + λu2(t)

+ 2rα(t)(ϕ(t)− x(t))2

+2α(t)(ϕ(t)− x(t))


(
µ+ λu(t)− r + σP (1−q)/2β(t)

α(t)

) (
σP (1−q)/2η(t) + λu(t)υ(t)

)
σ2P 1−q + λu2(t)

− η(t)β(t)

α(t)

+ λα(t)υ2(t)

+α(t)π2(t)(σ2P 1−q + λu2(t))− 2α(t)π(t)
[
σP (1−q)/2η(t) + λu(t)υ(t) + (µ+ λu(t)− r)(ϕ(t)−x(t))

]
+2β(t)(ϕ(t)−x(t))

(
η(t)−σP (1−q)/2π(t)

)}
dt+

[
β(t)(ϕ(t)− x(t))2 + 2α(t)(ϕ(t)− x(t))

×
(
η(t)− σP (1−q)/2π(t)

) ]
dW (t) + [2α(t)(ϕ(t)− x(t))(υ(t)− u(t)π(t)) + α(t)(υ(t)− u(t)π(t))2]dM(t).

Using the local martingale theory, we know that there is an increasing sequence of stopping times {τn} ↑ T as
n→∞ to make the above equation become

E
[
α(T ∧ τn)(ϕ(T ∧ τn)− x(T ∧ τn))2

]
= α(0)(ϕ(0)− x(0))2 + E

∫ T∧τn

0

α(t){λυ2(t) + η2(t)

−

[(
σP (1−q)/2η(t) + λu(t)υ(t)

)2
σ2P 1−q + λu2(t)

]
}dt+ E

∫ T∧τn

0

α(t)(σ2P 1−q + λu2(t))

×

π(t)−

σP (1−q)/2η(t) + λu(t)υ(t) +
(
µ+ λu(t)− r + σP (1−q)/2β(t)

α(t)

)
(ϕ(t−)− x(t−))

σ2P 1−q + λu2(t)


2

dt.

In the case that α(t) and ϕ(t) are uniformly bounded and E[sup0≤t≤T |x(t)|] < ∞, applying the dominated
convergence Theorem and the monotone convergence Theorem, we have

E[α(T )(ϕ(T )− x(T ))2] = α(0)(ϕ(0)− x(0))2 + E
∫ t

0

α(t)

{
λυ2(t) + η2(t)−

[
σP (1−q)/2η(t) + λu(t)υ(t)

]2
σ2P 1−q + λu2(t)

}
dt

+E
∫ t

0

α(t)(σ2P 1−q + λu2(t))

π(t)−
σP (1−q)/2η(t) + λu(t)υ(t)+

[
µ+λu(t)−r+σP (1−q)/2β(t)

α(t)

]
(ϕ(t−)− x(t−))

σ2P 1−q + λu2(t)


2

dt

Let α(T ) = 1 and ϕ(T ) = H. It is not difficult to find that the necessary and sufficient condition of the minimal
variance hedging portfolio is

π(t)−
σP (1−q)/2η(t) + λu(t)υ(t) +

(
µ+ λu(t)− r + σP (1−q)/2β(t)

α(t)

)
(ϕ(t−)− x(t−))

σ2P 1−q + λu2(t)
= 0.

Thus, we can obtain the optimal hedging portfolio

π(t) =
σP (1−q)/2η(t) + λu(t)υ(t) +

(
µ+ λu(t)− r + σP (1−q)/2β(t)

α(t)

)
(ϕ(t−)− x(t−))

σ2P 1−q + λu2(t)

and the optimal cost is

C∗ = α(0)(ϕ(0)− x(0))2 + E
∫ t

0

[
λυ2(t) + η2(t)− (σP (1−q)/2η(t) + λu(t)υ(t))2

σ2P 1−q + λu2(t)

]
dt.

Corollary 1. When the Tsallis non-extensive index q = 1, the model reduces to normal statistics and the minimal
variance hedging portfolio for (7) is

π(t) =
ση(t)+λu(t)υ(t)+

(
µ+λu(t)−r+σβ(t)

α(t)

)
(ϕ(t−)−x(t−))

σ2+λu2(t)
.

and the optimal cost is
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C∗ = α(0)(ϕ(0)− x(0))2 + E
∫ t

0

{
λυ2(t) + η2(t)− (ση(t) + λu(t)υ(t))2

σ2 + λu2(t)

}
dt

Note: Substituting q = 1 into Theorem 1, then the result of Corollary 1 is obtained. Moreover, the normal statistics
is actually included in our model as a special case.

4. Summary

Recently, to develop more accurate asset price models,
much effort has been done. In this paper, we introduce
a new asset price model based on the Tsallis statistical
mechanics and Poisson jumps, which can describe the
characteristics of long-run dependence of asset prices and
the skewness of the distribution of returns.

Furthermore, we consider the dynamic minimum-
variance hedging problem in this incomplete market.
By the use of stochastic control theory, we obtain a
closed-form solution for the minimum-variance hedging
policy.

As future work we will study the pricing of options
and optimal portfolio selection problems with other con-
straints, such as value-at-risk limit, under this asset price
model.
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