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The diagonal and non-diagonal parts for the Debye–Waller factor have been established using equation of

motion technique of quantum dynamics and the Dyson equation approach. The double time temperature dependent
phonon Green function has been taken to find the phonon linewidth and phonon shift. Renormalized mode
frequency has been investigated in terms of electron–phonon coupling constant and temperature. The effect of
electron–phonon interaction on the Debye–Waller factor has been studied in low temperature limit in low impurity
concentration in semiconductor crystals.
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1. Introduction

The widespread applications of semiconductor technol-
ogy have become a renaissance in 21st century to develop
new materials. The work on bulk semiconductor crys-
tals has been carried out recently [1]. The large amount
of work is being done on different semiconductor ma-
terials according to their utility towards society [2–11].
It is known that like X-rays, thermal neutrons have a de
Broglie wavelength of the order of the interatomic spac-
ings in crystals so that they can be used in diffraction
studies [12]. The Debye–Waller factor (DWF) is used to
find the differential scattering cross-section through dy-
namical structure factor in neutron scattering in impure
anharmonic solids [13]. The Debye–Waller factor is one
of the dynamical properties of the crystals, and its pres-
sure dependence is found in silicon and germanium by
using statistical moment method [14].

The quantity [2W] is called the Debye–Waller fac-
tor which governs the temperature dependence of the
scattering cross-section [15]. It is determined in com-
pound semiconductors by utilizing a recently proposed
eight-parameter bond-bending force model [16] and in
ternary chalcopyrite semiconductors from the available
bulk modulus, and interionic separation distances [17].
The progress of research in semiconductor physics is
achieved due to its (DWF) use to find the magnetic
form factor of Eu2+ in EuS [18], local structural prop-
erties in the terahertz semiconductor Zn1−xCdxTe [19],
to describe observed band gap dependence [20], ther-
modynamic properties of semiconductor compounds [21],
and vibrational dynamics and band structure of methyl-
terminated Ge(111) [22]. The temperature dependence
of DWF is governed by the molecular dynamics study
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in InSb [23], calculated from ab initio force constants in
sphalerite III–V semiconductors [24], and also obtained
from statistical moment method in compound semicon-
ductors [25]. In addition to these works, effect of anhar-
monicity has been applied to calculate different cumu-
lants. The second cumulant gives DWF which is depen-
dent on temperature [26–30].

It is established fact that theory based upon harmonic
approximation fails to explain the experimental observed
crystal properties due to zero point vibration even at zero
temperature. This can be understood by taking impurity
into consideration. This changes the frequency spectrum
of host crystal. This creates gap, localized and resonance
modes [31–34]. The presence of electron in crystal tries
to distort the lattice causes to increase its effective mass.
This distortion of the lattice is limited to the immediate
vicinity of the electron (small polaron) or extends over
several lattice constants (large polaron) [35]. Polaron
state occurs up to second order in electronic heat capacity
in low temperature limit [36]. An electron interacts with
harmonic mode and localized mode which is responsible
for the formation of many body system in semiconductor
continuum.

According to Hall et al. electron can absorb a photon
by indirect transition to conserve the energy and mo-
mentum laws at the same time [37]. A double time tem-
perature dependent phonon Green function is taken to
solve the present problem with the help of Hamiltonian
contributed by harmonic part, electron part, electron–
phonon interaction part, and defect part. The work has
been done on neutron scattering in impure anharmonic
solids [13], but in present case electron–phonon inter-
action is taken in semiconductor crystals with isotopic
impurity in low concentration in low temperature limit
to develop the theory of DWF. The present work dif-
fers from previous work that they have not taken the
electron–phonon interaction using equation of motion
technique of quantum dynamics, and the Dyson equation
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approach in their studies. The effect of electron–phonon
coupling constant, and temperature have been investi-
gated in detail. The DWF has been separated into diag-
onal and non-diagonal parts in semiconductor crystals.

This paper is divided into six sections. These are
introduction, formulation of the problem, evaluation of
the Fourier transformed phonon Green function, phonon
linewidth, and phonon shift, evaluation of renormalized
mode frequency and Debye–Waller factor, results and dis-
cussions, and conclusion of the theory at the end.

2. Formulation of the problem

The theory of DWF 2W can be achieved for semi-
conductor crystals by taking the following expression
as [12, 13, 38, 39]:

2W = − (MN)
−1∑

kk′

[K · e (k)] [K · e (k′)]

× (εkεk′)
−1/2

exp (2π i (k + k′) · x (l))

× lim
ω→0

∞∫
−∞

n (ε)dεImGkk′ (ε+ iω) . (1)

In above Eq. (1), n (ε), Gkk′ (ε) represent the Planck dis-
tribution function and the Fourier transformed double
time temperature dependent phonon Green function, re-
spectively [12, 13, 38, 39]. Thus, it is clear that the eval-
uation of imaginary part of the phonon Green function
is the main focus to achieve our goal.

3. Evaluation of the Fourier transformed phonon
Green function, phonon linewidth,

and phonon shift

The present theory is developed by taking Hamiltonian
as [40–49]:

H = Hop +Hoe +HD +Hep. (2)
In above Eq. (2), Hop, Hoe, HD, Hep represent harmonic
part, electron part, defect part, and electron–phonon in-
teraction part of Hamiltonian, respectively. They are
expressed as

Hop = (~/4)
∑
k

εk (A∗kAk +B∗kBk), (3a)

Hoe = ~
∑
q

εqb
∗
qbq, (3b)

HD = −~
∑
k1,k2

[C (k1,k2)Bk1Bk2

−D (k1,k2)Ak1
Ak2

] , (3c)

Hep = g~
∑
k,q

b∗QbqBk, (3d)

where
Ak = ak + a∗−k = A∗k, Bk = ak − a∗−k = −B∗−k,

Q = k + q. (4)
In above b∗q (bq), a∗k (ak), εk, εq, g, C (k1,k2) and
D (k1,k2) in Eqs. (3a)–(3d) are creation (annihilation)

operator of electron, creation (annihilation) operator of
phonon, phonon frequency (in energy unit), electron
band energy, electron–phonon coupling constant, mass
change and force constant change parameters, respec-
tively [40–49].

Let us take the following phonon Green function [50]:
Gkk′ (t, t′) = 〈〈Ak (t) ;A∗k′ (t′)〉〉 = − iθ (t− t′)

× [〈Ak (t) , A∗k′ (t′)〉] ,

where θ (t− t′) is the Heaviside unit step function.
Let us use equation of motion technique of quan-

tum dynamics and the Dyson equation approach,
Fourier transformed phonon Green function is obtained
as [13, 34, 47, 48, 50]:

Gkk′ (ε) = π−1ηkk′εk/
[
ε2 − ε̄2k + 2iεkΓ (kq, ε)

]
, (5)

where
ηkk′ = δkk′ + 4C (−k,k′) ε−1k , (6a)

ε̄2k = ε̃2k + 2εk∆ (kq, ε) , (6b)

ε̃2k = ε2k + εk (2π)
−1 (

εDk + εepk
)
. (6c)

In Eq. (6c), εDk and εepk are given as

εDk =8π

[
1+4ε−1k

∑
k1

C (−k,−k1)

][
εk′ε−1k C (−k,−k′)

+D (−k,−k′) + 4
∑
k′′

C (−k,−k′)

×D (−k′′,−k′) ε−1k

]
+ 8C (−k,k′)

×
(
ε2 − ε2k

)
ε−1k , (7a)

εepk = 4πg
[(
ε−1k εq − g

)
× (Nq +NQ) + 2gε−1k (Nqk +NQk)

]
, (7b)

where
Nq = 〈b∗qbq〉, NQ = 〈b∗QbQ〉, Nqk = 〈b∗qbqBk〉,

NQk = 〈b∗QbQBk〉. (8)
In above Eq. (5) and Eq. (6b), ε̄k, Γ (kq, ε), ε̃k,
and ∆ (kq, ε) are perturbed mode frequency, phonon
linewidth, renormalized mode frequency, and phonon
shift, respectively. In Eq. (6c), D and ep are due to con-
tributions from defect and electron phonon interaction
parts, respectively. The response function is obtained as

P (kq, ε) = PD (kq, ε) + P ep (kq, ε) , (9)
where

PD (kq, ε) = 8
∑
k1

R (−k,k1)R∗ (−k,k1)

×εk1

(
ε2 − ε̃2k1

)−1
, (10a)

P ep (kq, ε) = −
[
4g2 (Nq +NQδQQ′) / (ε− 2εq)

]
×
(
ε2q + g2ñkδkk′

)
. (10b)

Phonon linewidth and phonon shift are connected
through response function P (kq, ε) as

P (kq, ε+ iω) = ∆ (kq, ε)− iΓ (kq, ε) , ω → 0+. (11)
Phonon shift ∆ (kq, ε) is given as
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∆ (kq, ε) =∆D (kq, ε) +∆ep′
(kq, ε) +∆ep′′

(kq, ε) , (12)
where

∆D (kq, ε) = 8P
∑
k1

R (−k,k1)

×R∗ (−k,k1) εk1

(
ε2 − ε̃2k1

)−1
, (13a)

∆ep′
(kq, ε) = P

[
−4g2Nq/ (ε− 2εq)

]
×
(
ε2q + g2ñkδkk′

)
, (13b)

∆ep′′
(kq, ε) = P

[
−4g2NQδQQ′/ (ε− 2εq)

]
×
(
ε2q + g2ñkδkk′

)
. (13c)

In Eqs. (13a)–(13c), “P” represents principal value.
Phonon linewidth Γ (kq, ε) is given as

Γ (kq, ε) =ΓD (kq, ε) +Γ ep′
(kq, ε) +Γ ep′′

(kq, ε) , (14)
where

ΓD (kq, ε) = 8πω (ε)
∑
k1

R (−k,k1)

×R∗ (−k,k1) εk1δ
(
ε2 − ε̃2k1

)
, (15a)

Γ ep′
(kq, ε) = 4g2Nq

(
ε2q+g2ñkδkk′

)
δ (ε−2εq) , (15b)

Γ ep′′
(kq, ε) = 4g2NQδQQ′

×
(
ε2q + g2ñkδkk′

)
δ (ε− 2εq) . (15c)

Nq, NQ, ñk of Eqs. (10b, 13b, 13c, 15b, 15c) are evaluated
by applying equation of motion technique of quantum
dynamics to find the newly Fourier transformed phonon
Green function Gkk′ (ε) as [13, 34, 47, 48, 50]:

Gkk′ (ε) = εkπ
−1 [1 + 4C (k′,−k) ε−1k

] (
ε2 − ε̃′2k

)−1
−4g

(
ε2 − ε̃′2k

)−1∑
q

[εqGq′qk′ (ε) + gGkq′qk′ (ε)] , (16)

where
ε̃′2k = ε2k + 4εk

∑
k1

[C (k1,−k) +D (k1,−k1)

+4C (k1,−k)D (k1,−k1)] . (17)
The Green functions Gq′qk′ (ε) = 〈〈b∗q′bq;Ak′〉〉 and
Gkq′qk′ (ε) = 〈〈Bkb

∗
q′bq;Ak′〉〉 of Eq. (16) can be obtained

again by using equation of motion technique of quantum
dynamics [13, 34, 47, 48, 50] and they are substituted
in Eq. (16) to get

Gkk′ (ε) = 2−1π−1εkε̃
′−1
k

[
1 + 4C (k′,−k) ε−1k

]
×
[
(ε− ε̃′k)

−1 − (ε+ ε̃′k)
−1
]
− 2π−1g2

∑
q

Nq

×
{[

(ε̃′k − 2εq)
2 − ε2k

]−1
(ε− ε̃′k)

−1

+
[
(ε̃′k + 2εq)

2 − ε2k
]−1

(ε+ ε̃′k)
−1

+ (εk − 2εq) ε−1k

×
[
(εk−2εq)

2−ε̃′2k
]−1

[(ε−2εq) +εk]
−1

+ (εk+2εq)

×ε−1k

[
(εk+2εq)

2−ε′2k
]−1

[(ε−2εq)−εk]
−1
}
. (18)

The above evaluated phonon Green function Eq. (18),
gives NQ, Nq and ñk of Eqs. (10b, 13b, 13c, 15b, 15c)
as [51]:

ñk = 64π−1g2k2BT
2εkε̃

′−2
k

[
1 + 4C (k′,−k) ε−1k

]
×
∑
q

ε2qAkQ

(
ε̃′2k − ε̃′2Q

)2 (
ε4k − 8ε2kε

2
q − 2ε2kε̃

′2
k

−8ε̃′2k ε
2
q + 16ε4q + ε̃′4k

)
Ckqk (−)Ckqk (+)

×Dkqk (−)Dkqk (+) , (19a)

Nq = 2π−1kBTεkε̃
′−2
k

[
1 + 4C (k′,−k) ε−1k

]
×AkqBkqCkqk (−)Ckqk (+)Dkqk (−)Dkqk (+)

×Ekqq (−)Ekqq (+) , (19b)

NQ = 2π−1kBTεkε̃
′−2
k

[
1 + 4C (k′,−k) ε−1k

]
×AkQBkQCkqk (−)Ckqk (+)

×Dkqk (−)Dkqk (+)EkqQ (−)EkqQ (+) , (19c)
where

Akm =
(
ε̃′2k + ε̃′2m

)
, Bkm =

(
ε̃′2k − ε̃′2m

)−4
,

m = q,Q, (20a)

Ckqk (∓) =
[
(ε̃′k ∓ 2εq)

2 − ε2k
]−1

,

Dkqk (∓) =
[
(εk ∓ 2εq)

2 − ε̃′2k
]−1

, (20b)

Ekqm (∓) = [(εk ∓ 2εq)± ε̃′m]
−2
, m = q,Q. (20c)

Equations (15b) and (15c), with the help of Eqs. (19a)–
(19c), are modified as

Γ ep′
(kq, ε) =

{
g2T

[
1 + 4C (k′,−k) ε−1k

]
+g6T 3

[
1 + 16 (C (k′,−k))

2
ε−2k + 8C (k′,−k) ε−1k

]
×I (kqkQ)}AkqBkqF (kqk)Ekqq (−)Ekqq (+)

×δ (ε− 2εq) , (21a)

Γ ep′′
(kq, ε) =

{
g2T

[
1 + 4C (k′,−k) ε−1k

]
+g6T 3

[
1 + 16 (C (k′,−k))

2
ε−2k + 8C (k′,−k) ε−1k

]
×I (kqkQ)}AkQBkQF (kqk)EkqQ (−)EkqQ (+)

×δ (ε− 2εq) , (21b)
where

F (kqk) = 8π−1kBεkε̃
′−2
k ε2qCkqk (−)Ckqk (+)

×Dkqk (−)Dkqk (+) , (22a)

I (kqkQ) = 64π−1k2Bε̃
′−2
k

∑
q

εkAkQ

(
ε̃′2k − ε̃′2Q

)2
×
(
ε4k − 8ε2kε

2
q − 2ε2kε̃

′2
k − 8ε̃′2k ε

2
q + 16ε4q + ε̃′4k

)
×Ckqk (−)Ckqk (+)Dkqk (−)Dkqk (+) . (22b)
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4. Evaluation of renormalized mode frequency
and the Debye–Waller factor

The substitution of Eq. (19b) and Eq. (19c) in Eq. (6c)
yields the renormalized mode frequency in low impurity
concentration as

ε̃2k =
(
ε̃2k
)′

+
(
ε̃2k
)′′
, (23)

where(
ε̃2k
)′

= ε2k + εk (2π)
−1 [

εDk + 8gkBTε
−1
k

(
ε−1k εq − g

)
×Ckqk (−)Ckqk (+)Dkqk (−)Dkqk (+)

× (AkqBkqEkqq (−)Ekqq (+)

+AkQBkQEkqQ (−)EkqQ (+))] , (24a)(
ε̃2k
)′′

= ε2k + εk (2π)
−1 [

εDk + 32kBgTC (k′,−k) ε−2k

×
(
ε−1k εq − g

)
Ckqk (−)Ckqk (+)Dkqk (−)Dkqk (+)

× (AkqBkqEkqq (−)Ekqq (+)

+AkQBkQEkqQ (−)EkqQ (+))] . (24b)
Equation (24a) and Eq. (24b) are the diagonal and non-
diagonal parts of renormalized mode frequency, respec-
tively. The Debye–Waller factor is obtained after substi-
tuting imaginary part of phonon Green function Eq. (5)
in Eq. (1) through Eqs. (14, 15a, 21a, 21b) as [13]:

[2W ] = [2W ]
D
d + [2W ]

D
nd + [2W ]

ep′

d + [2W ]
ep′

nd

+ [2W ]
ep“
d + [2W ]

ep“
nd , (25)

where,

[2W ]
D
d = 16π~−1kBT (MN)

−1∑
k,k1

K2ω
(
ε̃2k1

)
εkε̃
−2
k1

×R (k1,−k)R∗ (k1,−k)
(
ε̃2k1
− ε̄2k

)−2
, (26a)

[2W ]
D
nd = 64π~−1kBT (MN)

−1 ∑
k,k′,k1

C (−k,k′)

× [K · e (k)] [K · e (k′)]ω
(
ε̃2k1

)
ε̃−2k1

R (k1,−k)

×R∗ (k1,−k)
(
ε̃2k1
− ε̄2k

)−2
, (26b)

[2W ]
ep′

d = ~−1kBg2T 2 (MN)
−1∑

k

K2εkε
−1
q

×
(
4ε2q − ε̄2k

)−2
F (kqk)AkqBkqEkqq (−)Ekqq (+)

×
[
1 + g4T 2I (kqkQ)

]
, (26c)

[2W ]
ep′

nd = 4~−1kBg2T 2 (MN)
−1∑

k,k′

C (−k,k′)

× [K · e (k)] [K · e (k′)] ε−1q

(
4ε2q − ε̄2k

)−2
F (kqk)

×AkqBkqEkqq (−)Ekqq (+) [1 + 4C (k′,−k)

×g4T 2I (kqkQ)
]
, (26d)

[2W ]
ep′′

d = ~−1kBg2T 2 (MN)
−1∑

k

K2εkε
−1
q

×
(
4ε2q − ε̄2k

)−2
F (kqk)AkQBkQEkqQ (−)EkqQ (+)

×
[
1 + g4T 2I (kqkQ)

]
, (26e)

[2W ]
ep′′

nd = 4~−1kBg2T 2 (MN)
−1∑

k,k′

C (−k, k′)

× [K · e (k)] [K · e (k′)] ε−1q

(
4ε2q − ε̄2k

)−2
F (kqk)

×AkQBkQEkqQ (−)EkqQ (+) [1 + 4C (k′,−k)

×g4T 2I (kqkQ)
]
. (26f)

In Eq. (25) and Eqs. (26a)–(26f), d and nd are diago-
nal and non-diagonal terms of defect (D) and electron-
phonon interaction parts (ep′,ep′′) of DWF, respectively.

5. Results and discussions

Phonon linewidth obtained from equation of motion
technique provide defect and electron–phonon interac-
tion contributions in semiconductor crystals. They
are responsible for diagonal and non-diagonal contribu-
tion to DWF. The perturbed mode frequency is con-
tributed by renormalized mode frequency and phonon
shift. Renormalized mode frequency and phonon shift
are contributed by defect dependent term and electron–
phonon interaction term. The renormalized mode fre-
quency is obtained in terms of diagonal and non-diagonal
parts. The defect part of it is dependent on mass and
force constant change parameters and their cross-term
while electron–phonon interaction part is linear and non-
linear function of electron–phonon coupling constant and
linear variation on temperature. The formation of local-
ized mode and an interaction of electron with phonon
are the source to generate renormalized localized mode
frequency and two exciton bound state, respectively.
When two exciton bound state and renormalized local-
ized mode frequency are identical with perturbed mode
frequency, the intensity of the Debye–Waller factor in-
creases asymptotically. An electron–phonon interaction
shows the dominant contribution through linear and non-
linear dependence on mass change parameter in compar-
ison to linear variation of defect term on mass change
parameter in the Debye–Waller factor. It is evident in
semiconductor that T 2, T 4 dependence due to electron–
phonon interaction is dominant over linear dependence
on temperature in localized field. In low impurity con-
centration limit, the diagonal part gives its more contri-
bution in comparison to non-diagonal part for this dy-
namical property.

In low temperature limit, T 4 dependence is domi-
nant over T 2 dependent term due to strong coupling
constant g6 in comparison to g2 term. The tempera-
ture dependence of DWF can also be seen in Ref. [52].
In the absence of electron–phonon interaction and also
in the absence of low temperature limit, this work tends
to defect dependent term of the Debye–Waller factor
of Ref. [13]. It is also found from this theory that
weak electron–phonon coupling demands low power de-
pendence on mass change parameter in comparison to
high power dependence on mass change parameter in
strong electron–phonon coupling. The terms Bkq, BkQ,
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Ckqk (∓), Dkqk (∓), Ekqq (∓), EkqQ (∓) provide the sig-
nificant contribution in the limit ε̃′k = ε̃′q, ε̃′Q, ε̃

′
k ∓ 2εq =

εk, εk ∓ 2εq = ε̃′k, εk ∓ 2εq = ∓ε̃′q, ∓ε̃′Q respectively to
increase the DWF. In low temperature limit, an inter-
action of electron with harmonic and localized fields are
the major factors to explain the temperature dependence
of DWF as obtained by previous authors adopting a dif-
ferent technique [52]. This paper is limited to develop
the theory to know the cause of temperature dependence
of DWF by applying equation of motion technique of
quantum dynamics, and the Dyson equation approach,
so numerical results have not been evaluated.

6. Conclusion

The renormalized mode frequency, and the Debye–
Waller factor are expressed in terms of diagonal and non-
diagonal parts. Renormalized mode frequency is linearly
and non-linearly dependent on electron phonon coupling
constant, and linearly dependent on temperature. But
DWF is non-linearly dependent on both electron–phonon
coupling constants and temperature in electron–phonon
interaction field in semiconductor crystals. The non-
diagonal parts are dependent on mass change parame-
ter, and vanish in absence of impurity. The creation of
renormalized localized mode frequency, perturbed mode
frequency, and two exciton bound state are the source to
influence the intensity of the Debye–Waller factor.
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