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1. Introduction

Scientific interest in argon has arisen because of its
molecular simplicity. Since the molecule is monoatomic,
nonpolar and completely spherical, argon gas is com-
monly used as a reference fluid to establish and test
molecular approaches for predicting thermodynamic
properties and for calibrating new apparatuses for ther-
modynamic measurements [1]. In addition, argon is a
model substance for fundamental atomic and condensed
matter physics. This substance has been the subject
of numerous experimental and theoretical investigations.
Thanks to its relative cheapness, commercial and indus-
trial applications of argon are widespread [1, 2].

Many theoretical methods have been developed for
studying the properties of argon gas: Monte Carlo simu-
lations [3] were used to predict the thermophysical prop-
erties of pure Ar as well as the binary mixtures Ne–Ar.
An ab initio potential was used in computer simula-
tions to yield the thermodynamic properties of the fluid
phases [4]. The effective diameters and free volumes
of argon were evaluated over a wide range of densities
and temperatures. The thermophysical properties of the
gas were evaluated from 83 to 10000 K, using quantum-
mechanical ab initio calculations. The calculated quanti-
ties included the second pressure virial coefficient, second
acoustic virial coefficient, second dielectric virial coeffi-
cient as well as viscosity and thermal conductivity [5].

An analytic equation of state, based on a statistical-
mechanical perturbation theory, was applied to calcu-
late the thermodynamic properties of the gas. These in-
cluded the vapor pressure curve, compressibility factor,
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fugacity coefficient [1], internal energy, enthalpy, entropy
and heat capacity [6], using a Lennard-Jones (12-6)-type
potential. The density, internal energy, enthalpy, en-
tropy, specific heat, compressibility factor as well as sec-
ond virial and the Joule–Thomson coefficients of liquid
and gaseous argon were determined in the temperature
range 83.8–300 K at pressures 0.01–1000 atm [7].

An equation of state for argon has been written in
terms of the reduced Helmholtz free energy [8]. This
equation incorporates a substantive amount of experi-
mental thermodynamic data. It covers the largest part
of the fluid region and is valid for single-phase and satu-
ration states from the melting line to 700 K at pressures
up to 1000 MPa. Another recent equation of state for
argon has been developed [9]. This new equation has
been derived from the measured heat capacity CV (ρ, T )
and pressure P (ρ, T ). It is valid for the whole fluid re-
gion (single-phase and coexistence states) from the melt-
ing line to 2300 K and for pressures up to 50 000 MPa.
It shows a more physical behavior along isochors when
T tends to zero for such basic properties as the isochoric
heat capacity and the compressibility factor. It also dis-
plays a more reasonable behavior for the crossing of the
coexistence phase.

In this paper, the Galitskii–Migdal–Feynman (GMF)
formalism [10–14] is applied to Ar gas for studying its
scattering and thermodynamic properties in the tempera-
ture range 87.3–120 K, using the Hartree–Fock dispersion
(HFD-B3) interatomic potential, with special emphasis
on the quantum second virial coefficient [15]. The validity
of the GMF formalism in the low-density regime has been
demonstrated repeatedly over the years [10–14]. The rea-
son for this choice of temperature range is to enable us to
compare our results to other results available in the liter-
ature, both experimental and theoretical. In this range,
Ar gas furnishes a fertile ground for applying many-body

(1131)

http://dx.doi.org/10.12693/APhysPolA.129.1131
mailto:brjoudeh.bj@gmail.com


1132 I.F. Al-Maaitah et al.

formalisms of the type used here — i.e., formalisms which
operate best for relatively low-dense (in the sense that the
interaction range is less than the interparticle spacing),
weakly-interacting systems.

The lower-temperature limit (87.3 K) is close to the
boiling point of Ar. By the time the system reaches the
higher limit (120 K), it is already very much a gas, though
still a nonideal fluid, with some residual “quantumness”
— the “quantum” character and nonideality diminishing
gradually with increasing temperature. Thus, we have
here a nonideal gas which is a fertile ground for applying
many-body formalisms of the type used in this work.

The basic quantity in the GMF formalism is the
T -matrix. It is essentially an “effective” pairwise inter-
action in momentum space which takes into account the
presence of the many-body medium in some average man-
ner. It can also be viewed as a generalized scattering am-
plitude, or as a “dressed” Lippmann–Schwinger t-matrix
(which describes the scattering of two particles in free
space). The GMF T -matrix was originally derived for
many-fermionic systems, but was later adapted to many-
bosonic systems [12, 13]. This formalism is used to cal-
culate the “effective” phase shifts that incorporate many-
body effects; they are functions of the density and tem-
perature. From these phase shifts all other properties of
the system follow.

The rest of the paper is organized as follows. The theo-
retical framework is presented in Sect. 2. The results are
summarized and discussed in Sect. 3. Finally, in Sect. 4,
the paper is concluded with some closing remarks.

2. Theoretical framework

2.1. Effective cross-sections

We start with boson–boson scattering in a medium.
A spinless boson with wave vector k and orbital angular
momentum ` is incident on another spinless boson ini-
tially at rest in the medium. General expressions for the
cross-sections, including the total (σT) and viscosity (ση)
cross-sections, are given by [16–20]:

σT =
8π

k2

∞∑
`(even)

(2`+ 1) sin2
(
δE` (k)

)
, (1)

ση =
4π

k2

∞∑
`(even)

(`+1) (`+2)(
`+ 3

2

) sin2
(
δE`+2 (k)−δE` (k)

)
. (2)

The average cross-sections (〈σT〉, 〈ση〉) are calculated ac-
cording to [21]:

〈σ〉 = (kBT )−(p+1)

∞∫
0

σ(E)EP e(−E/kβT )dE, (3)

kB being Boltzmann’s constant. For p = 1, this corre-
sponds to the average total cross-section 〈σT〉; for p = 3,
it reduces to the average viscosity cross-section 〈ση〉.

Occasionally, we shall use a “natural” system of units,
such that ~ = 2m = kB = 1, m being the atomic mass
and ~ Dirac’s constant (= h/2π). The conversion factor
is ~2/2m = 1.2162494K Å2.

The classical second virial coefficient Bcl(T ) is given
by [22, 23]:

Bcl(T ) = 2π

∞∫
0

[
1− e−βV (r)

]
r2dr. (4)

The expression
(
1− eβV (r)

)
is the well-known Mayer

function, β being the inverse temperature [in our nat-
ural units] and V (r) the interatomic potential. Clearly,
the sole input in calculating Bcl(T ) is V (r).

On the other hand, the quantum second virial coeffi-
cient Bq(T ) is given by the well-known Beth–Uhlenbeck
formula [24, 25]:

Bq(T ) = − λ3

25/2
− 23/2λ3

∑
EB

(
e−βEB − 1

)

−23/2λ5

π2

∞∫
0

dkk

∞∑
`(even)

(2`+ 1) δE` (k) e−βE(k). (5)

Here λ is the thermal de Broglie wavelength, EB denotes
bound-state energies and δE` (k) is the effective `-partial
phase shift corresponding to energy E (k) = ~2k2/2m.
The first term on the right-hand side is the “ideal Bose
gas” term which diminishes with increasing temperature;
it depends on the statistics, but not on the interaction.
The second represents the contribution of bound states
in the system; it is related to its discrete energy levels.
However, this term can be neglected [26], as shown below.
The third term represents the contribution of scattering
states; it is the major term in Bq(T ) [12, 14].

2.2. GMF T -matrix

The starting point in computing Bq, then, is the deter-
mination of δE` . This can be accomplished by solving the
GMF integral equation for the T -matrix, using a matrix-
inversion technique.

This matrix is given by a Bethe-Salpeter-like equa-
tion [10, 11, 27]:

T (p,p′; s,P , β) = u (|p− p′|)− (2π)
−3

×
∫

dku (|p− k|) [g0 (k, s)Q (k,P , β)

−g+0 (k, s) Q̄ (k,P , β)
]
T (k,p′; s,P , β) . (6)

Here p and p′ are the relative incoming and outgoing mo-
menta; P is the center-of-mass momentum. The operator
u ≡ 2mrV

~2 ≡ 1
2V [in natural units], mr being the reduced

mass of the Ar interacting pair: mr = 1
2m, and V is the

Fourier transform of a static central two-body potential.
The free two-body Green function g0(s) is specified by
g0 (k, s) ≡ 1

k2−s− iη , η being a positive infinitesimal in
the scattering region (s > 0) and zero otherwise, and the
parameter s is the total energy of the interacting pair in
the center-of-mass frame, given by

s ≡ 2µ

(
2P0 −

P 2

m

)
, (7)

P0 is the total energy of the pair and P 2 is the energy car-
ried by the center of mass. For a many-bosonic system,
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the operator Q
(
Q̄
)
is the product of two distributions as

follows [12, 13, 28]:
Q (k, P, β) = (1 + n (|k − P |)) (1 + n (|k + P |)) , (8)

Q̄ (k, P, β) = n (|k − P |)n (|k + P |) . (9)
where n (k) is the Bose–Einstein distribution, given by

n (ε) =
1

eβ(ε−µ) − 1
, (10)

ε being the single-particle energy.
The chemical potential µ is given by [29]:

µ = kBT ln

(
n

nq

)
, (11)

nq is the quantum concentration given by nq =(
mkBT
2π~2

)3/2
.

Upon partial-wave decomposition, Eq. (6) takes the
form [11]:

T` (p,p′; s,P , β) = u` (|p− p′|)− (2π)
−2

×
∞∫
0

k2dku` (|p− k| ) [g0 (k, s)Q (k,P , β)

−g+0 (k, s) Q̄ (k,P , β)
]
T` (k,p′; s,P , β) . (12)

This equation represents the full-off-shell T -matrix per-
tainining to a relative partial wave `, from which the
on-energy-shell counterpart T` (p,P ) is obtained directly
by setting p = p′ and s = p2. Clearly, in the free-
scattering limit, Q(Q̄) → 1(0); so that Eq. (6) reduces
to the Lippmann–Schwinger t-matrix.

The parametrized T` (p;P ;β) can be expressed in
terms of real effective many-body shifts δE` (p;P, β) ac-
cording to [10, 11]:

T` (p;P ;β) = − 2π

p
(
Q (p;P, β) + Q̄ (p;P, β)

)
×
[
sin
(
2δE` (p;P, β)

)
+ i

(
1− cos

(
2δE` (p;P, β)

))]
, (13)

so that

δE` (p;P, β) ≡ tan−1
ImT` (p;P ;β)

ReT` (p;P ;β)
. (14)

ImT` (p;P ;β) and ReT` (p;P ;β) denote, respectively, the
imaginary and real parts of T` (p;P ;β), and are de-
fined by

ReT` (p;P ;β) = − 2π

p
(
Q (p;P, β) + Q̄ (p;P, β)

)
× sin

(
2δE` (p;P, β)

)
, (15)

ImT` (p;P ;β) = − 2π

p
(
Q (p;P, β) + Q̄ (p;P, β)

)
×
(
1− cos

(
2δE` (p;P, β)

))
. (16)

The two-body potential representing the Ar–Ar interac-
tion is taken in the present work as the HFD-B3 poten-
tial [15]. This is because the HFD-B3 potential char-
acterizes accurately the properties which “feel” the well,
together with the low and very high repulsive regions, of
the potential. However, it should be mentioned that this
potential fails to predict the transport properties of the

gas in the 1600–7000 K temperature range [15] which is
well outside the present range. This potential is given by

V (r) = εV ∗ (x) , (17)

V ∗ (x) = A exp
(
−αx+βx2

)
−F (x)

2∑
j=0

c2j+6

/
x2j+6 ,

F (x) =

{
exp

(
−
((

D
x − 1

)2))
, x < D

1, x > D

x ≡ r
rm

, rm = 3.761 Å, A = 1.13211845, α = 9.00053441,
β = 2.60270226, D = 1.04, C6 = 1.09971113, C8 =
0.54511632; C10 = 0.39278653, ε/kB = 143.25 K.

The principal features of the interatomic argon poten-
tial are: (i) a strongly-repulsive, short-range component
arising from the Pauli exclusion principle as the elec-
tronic clouds of the two interacting atoms begin to over-
lap strongly; (ii) a weakly-attractive tail, thanks to Van
der Waals’ forces, which can be viewed either as a multi-
pole expansion reflecting the interaction between the po-
larization fields associated with the interacting atoms or,
in field-theoretic language, exchange of long-wavelength
phonons; (iii) a minimum in between denoting equilib-
rium. This is the same as in other inert atomic systems
— including helium, lithium, neon and sodium, among
others.

The T -matrix takes into account only “ladder” dia-
grams; the long-range “ring” diagrams are not included,
nor is the “self-energy insertion”. Cumulative experi-
ence [12] indicates that this is justified in gaseous, rel-
atively low-dense and weakly-interacting systems, such
as ours.

3. Results and discussion
3.1. Effective cross-sections

The effective Ar–Ar total, viscosity and average cross-
sections were calculated using the HFD-B3 potential, ac-
cording to Eqs. (1)–(3), respectively. It was found neces-
sary to include partial waves up to ` = 36, so as to obtain
results accurate to better than ≈0.5%. Our results are
summarized in Figs. 1–5 and Tables I–III.

Figure 1 shows the behavior of the effective total cross-
section σT, together with the even `-wave components
σ`(` = 0, 2, 4, 6, 8, 10), as functions of the relative mo-
mentum k. There exists a minima-and-maxima struc-
ture in σT. The peaks in σT imply a resonance-like
behavior. The resonances are essentially bound states,
but with shorter lifetimes; they are quasi-bound states.
These arise because the repulsive angular-momentum
barrier ≈ `(`+1)

r2 “screens” the short-range repulsive part
of the interatomic potential, thereby allowing the in-
teracting particles to “see” in effect more attraction.
For k ≈ 0.125 Å−1, S-wave (` = 0) scattering domi-
nates. With increasing k, σ0 tends to decrease, whereas
the contribution of higher `-waves to the scattering in-
creases. Specifically, D-wave (` = 2) scattering for
k ≈ 0.338 Å−1 dominates; so does G-wave (` = 4) scat-
tering for k ≈ 0.573 Å−1. The I wave (` = 6) is the
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Fig. 1. The `-wave effective cross-sections σ` [Å2],
` = 0, 2, 4, 6, 8, 10, and the total cross-section σT [Å2]
for Ar–Ar scattering as functions of relative momen-
tum k [Å−1].

most significant partial wave contributing to the total
cross-section for k ≈ 0.4 Å−1; so is the (` = 8) wave for
k ≈ 0.711 Å−1 and the (` = 10) wave for k ≈ 0.950 Å−1.

TABLE I

The relative momentum at resonance kR
and the binding energy ER [K] of the
weakly-bound (Ar)2-dimer for various `.

` kR [Å−1] ER [K]
0 0.125 0.019
2 0.338 0.139
4 0.573 0.399
6 0.433 0.228
8 0.710 0.613
10 0.950 1.10

The energies of all resonances ER can be determined
from ER =

(
~2k2R
m

)
, kR being the relative momentum at

resonance; they are given in Table I. Substituting these
in the second term on the right-hand side of Eq. (5), one
concludes that this term is indeed negligible.

TABLE II

The relative momentum kmin and the binding energy
Emin [K] of the weakly-bound (Ar)2-dimer for various `.

` kmin [Å−1] Emin [K]
0 0.295 0.106
2 0.573 0.399
4 0.863 0.906
6 0.574 0.400

The minimum is evidence for the atomic Ramsauer–
Townsend effect [30], occurring in the collision between
two bodies when the total cross-section is a minimum
and, therefore, the mobility is a maximum [31]. This min-
imum arises from a delicate balance between the attrac-
tive long-range and repulsive short-range interactions.

We have already encountered it in other atomic sys-
tems where we have analyzed it quite carefully [32].
It appears in electronic systems and in molecular 4He–
4He [12, 13, 33, 34] as well as 3He–3He [12, 35]. Our
results for Emin are presented in Table II.

Fig. 2. The effective total cross-section σT [Å2] for
Ar–Ar scattering as a function of relative momentum
k [Å−1].

In the high-energy region, there are undulations in σT.
These originate from the indistinguishability of the
Ar atoms, which are scattered mainly by the repulsive
part of the potential [36, 37]. Because the kinetic-energy
part is much larger than the interaction part, the ampli-
tude of the undulations decreases, to a first approxima-
tion; as the inverse of the relative velocity of the colliding
atoms [36, 38]. Figure 2 displays σT as a function of k at
T = 100 K.

TABLE III

The S-wave scattering length a0 [Å] and cross-
section σT(0) [Å2] at different T [K] for two different n.

n = 0.001nq n = 0.01nq

T [K] a0 [Å] σT(0) [Å2] a0 [Å] σT(0) [Å2]
90 –2.04 105.10 206.50 9.16× 105

100 –2.05 105.70 192.70 1.05× 105

105 –2.06 105.20 186.90 8.63× 105

120 -2.05 105.26 172.48 7.37 ×105

Table III exhibits the relation between the number
density n and the S-wave scattering length a0 at dif-
ferent T . It is noted that a0 and σT(0) depend on n, but
hardly on T : at low n, a0 < 0 (attractive case); whereas
at high n, a0 � 0 (weakly-bound, fragile case). Fig-
ure 3 represents the effective viscosity cross-section ση as
a function of k; ση has the same overall behavior as σT.

The average total cross-section 〈σT〉 tends to decrease
as T increases at the same value of n. This is evident in
plots of 〈σT〉 vs. T , Fig. 4. Also, it is clear that 〈σT〉 is
nearly constant at low n, but increases at high n. The av-
erage viscosity cross-section 〈ση〉 has the same general
behavior as 〈σT〉 (Fig. 5).
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Fig. 3. The effective viscosity cross-section ση [Å2]
for Ar–Ar scattering as a function of relative momen-
tum k [Å−1].

Fig. 4. The average effective total cross-section
〈σT〉 [Å2] for Ar-Ar scattering as a function of
temperature T [K] for different number densities n.

Fig. 5. The average effective viscosity cross-section
〈ση〉 [Å2] for Ar-Ar scattering as a function of temper-
ature T [K] for different number densities n.

3.2. Second virial coefficient

Our results for the classical and quantum second virial
coefficients are summarized in Figs. 6,7 and Tables IV,V
for the HFD-B3 potential. These coefficients were cal-
culated in the T -range 87.3–120 K. Clearly Bcl and Bq

are predominantly negative; but Bcl and Bq become less
negative as T increases.

Fig. 6. The quantum second virial coeffi-
cient Bq [cc/mole] as a function of temperature T [K]
for different number densities n. The classical second
virial coefficient Bcl is also plotted for comparison
purposes.

Fig. 7. The quantum second virial coeffi-
cient Bq [cc/mole] as a function of n/nq at different
temperatures T [K].

The quantum second virial coefficient Bq was calcu-
lated for different n and compared with Bcl as shown
in Fig. 6. From this figure it is noted that Bcl and Bq

falls rapidly as T is reduced towards the lower limit of this
range. For low T , the mean energies of the atoms in the
gas are of the same order of magnitude as the depth of the
potential well, resulting in an increase in the attractive
forces between the interacting atoms; these spend most
of their time in the attractive region of the potential.
This results in a decrease in the gas pressure which leads
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to a negative B(T ). For high T , the average energies of
the atoms increase and become large in comparison to
the maximum energy of attraction. Therefore, the pre-
dominant contribution to B(T ) arises from the repulsive
portion of the potential. This causes an increase in the
gas pressure and, hence, B(T ) becomes less negative [39].

Figure 7 shows that Bq starts to decrease as n in-
creases, reaching a minimum then increasing again.
The minimum value Bqmin increases (becomes less neg-
ative) with increasing T . At relatively high T , particles
may collide with such a great force that some interpen-
etration is possible. When this occurs, the increase in n
causes a decrease in Bq [39].

TABLE IV

The quantum second virial coefficient Bq [cc/mole] at dif-
ferent T [K]. Some previous results are included for com-
parison purposes.

T

[K]
Bq(T )at

n=0.0 (LS)
Bq(T )at

n=0.001nq

Bq(T )at

n=0.4nq

B(T )th
[5]

B(T )exp

[40]
B(T )th

[7]
88 -199.73 -199.24 -227.50 -231.20 -239.10
90 -196.56 -196.10 -224.20 -221.67 -215.22
92 -193.48 -193.04 -219.60 -212.77 -219.30
94 -190.47 -190.05 -215.90 -204.44
96 -187.52 -187.12 -213.20 -196.63 -202.00
98 -184.64 -184.27 -210.30 -189.29
100 -181.83 -181.47 -206.60 -182.37 -186.80 -180.09
102 -179.07 -178.73 -203.70 -175.86
104 -176.38 -176.06 -200.90 -169.70 -173.30
106 -173.75 -173.44 -197.30 -163.88
108 -171.18 -170.89 -194.10 -158.37 -161.20
110 -168.66 -168.39 -189.50 -153.14 -152.39
112 -166.21 -165.98 -186.60 -150.50
115 -162.62 -162.34 -183.10 -141.17
116 -161.45 -161.20 -178.60 -140.80
120 -156.89 -156.66 -173.80 -130.58 -132.00 -130.32

Table IV includes a comparison of our results to exper-
imental and other theoretical values. Clearly, the present
results are comparable to those. In particular, the GMF
results (at high n) show good agreement with previous
results at T < 94 K, whereas the LS results show good
agreement at T > 94 K. However, the GMF formalism
should be more accurate than the LS formalism because
the latter completely ignores the medium! We therefore
humbly believe that the present calculations merit a new
experimental investigation of B for Ar gas. The results
of Ref. [5] were calculated classically; quantum correc-
tions were then added.

Argon is expected to be a classical gas in the present
T -range — unlike helium gas which exhibits a strong
quantum behavior at low T [12]. There is more than
one way of characterizing the “quantumness” of a system.
One such measure is the quantum parameter η [41]:

η =
(
~2/mεr2m

)1/2
. (18)

This is in effect the ratio of the kinetic energy at zero T
to potential energy. For Ar, rm = 3.761 Å; at ε/kB =
143.25 K, η = 0.02.

Another measure of quantumness is the thermal de
Broglie wavelength λ that should be compared to the
interparticle distance (1/n)1/3 at n > nBmin = 0.9nq.
Bqmin and the corresponding values of n, nBmin, (1/n)1/3

and λ are listed in Table V. It is noted that the min-
imum of Bq occurs when the interparticle distance has
the largest value.

TABLE V

Bqmin [cc/mol] and the corresponding, nq, nBmin,
(1/n)1/3 and λ for different T [K].

T
[K]

Bqmin

[cc/mol]
nq × 1031

[atoms/m3]
nBmin × 1031

[atoms/m3]
(1/n)1/3

[Å]
λ

[Å]
87.3 –276.1 38.61 34.75 0.306 0.296
90 –266.9 40.42 36.38 0.302 0.291
95 –253.8 43.83 39.45 0.294 0.284
100 –239.7 47.34 42.60 0.286 0.276
120 –199.0 62.23 56.00 0.2613 0.252

From this table, it is concluded that Ar gas exhibits
small quantum effects in the T -range considered.

3.3. Pressure–volume–temperature (P–V –T ) behavior

The “virial equation of state” is given by [22]:
P

nkBT
= 1 + nBq. (19)

The Bq-dependence on T can readily be obtained by ap-
plying least-squares fitting to the polynomial

Bq = A+BT + CT 2 +DT 3 + ET 4, (20)
where A,B,C,D, and E are listed in Table VI for
different n.

TABLE VI
The parameters of Bq, calculated for different n.

n/nq
A[
cc
mol

] B[
cc

(mol K)

] C[
cc

(mol K2)

] D[
cc

(mol K3)

] E[
cc

(mol K4)

]
0.001 -437.816 4.184 -0.02096 5.123×10−5 -3.658×10−8

0.01 -369.166 1.657 0.01422 -1.670×10−4 4.7052×10−7

0.1 2562.201 -116.146 1.77470 -0.01177 2.8922×10−5

0.4 -10286.016 381.222 -5.42892 0.03438 -8.133×10−5

0.9 4770.572 -195.639 2.74791 -0.01659 3.6693×10−5

The results for Bq and the corresponding fitted equa-
tions are plotted in Fig. 8 for the HFD-B3 potential.
The agreement is excellent between the fitted curves and
the calculated values of Bq in the present T -range for
different n.

The P–T curves in Fig. 9 indicate that P increases
with increasing T , n being held fixed. Figure 10, on the
other hand, shows that P reaches a maximum then de-
creases with increasing n. This is because the interatomic
repulsive forces cause P to increase rapidly from A to B;
whereas the attractive forces cause P to decrease equally
rapidly from B to C (gas–liquid transition) [42]. The val-
ues of P , T , and n in both figures are based on Table VII.
Our results are compared in Table VIII to experimental
values.
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Fig. 8. The calculated quantum second virial coeffi-
cient Bq [cc/mole] values and their fitting equations ver-
sus temperature T [K] for different number densities n.

Fig. 9. The pressure P [atm] as a function of tempera-
ture T [K] for different number densities n [atoms/m3].

Fig. 10. The pressure P [atm] as a function of number
density n [atoms/m3] at different temperatures T [K].

TABLE VII

The pressure P [atm] as a function of temperature T [K] for
different number densities n [atoms/m3], using the virial
equation of state.

n [atoms/m3]
T 2×1025 5.5×1025 2×1026 1027 1.6×1027 2×1027 8×1027

[K] P [atm]
87.3 0.230 0.79 2.25 8.0 9.86 8.7 -200.8
92 0.259 0.82 2.40 8.7 10.1 9.0 -194.8
95 0.274 0.84 2.50 9.1 10.7 9.9 -194.2
100 0.288 0.865 2.60 9.7 11.6 11.0 -192.7
105 0.302 0.869 2.70 10.4 12.5 12.0 -191.4
110 0.317 0.91 2.90 11.0 13.5 13.4 -184.4
115 0.331 0.92 3.00 11.7 14.5 14.6 -182.0
120 0.346 0.928 3.10 12.3 15.5 15.9 -173.5

TABLE VIII

The pressure P [atm] as a function of temperature T [K];
the number density n = 2 × 1026 atoms/m3. Some
previous theoretical results are included for comparison
purposes.

T [K] P [atm] Previous data
92 2.4 1.6 atm; n = 1.3× 1026 m−3 [40]
95 2.5 2.1 atm; n = 1.7× 1026 m−3 [40]
100 2.6 3 atm; n = 2.4× 1026 m−3 [42]
110 2.9 3 atm; n = 2.1× 1026 m−3 [42]
120 3.1 3 atm; n = 1.9× 1026 m−3 [42]

The critical physical quantities nc and Vc as well as
the maximum pressure Pmax are listed in Table IX at
different T . Figure 11 shows P as a function of V
for different T . It is noted that if the system is com-
pressed, V decreases until it reaches a critical value
(Vc ≈ 6.25 × 1028 m3/atom) at Pmax ≈ 10.66 atm when
T = 95 K. If V is decreased a little below Vc by com-
pression to a pressure a little above Pmax, the system
begins to collapse; V and P decrease at the same time,

Fig. 11. The pressure P [atm] as a function of vol-
ume V [m3/atom] at different temperatures T [K].
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T being held fixed. As expected, the system undergoes
a phase (gas–liquid) transition. Our value for Vc (6.25×
10−28 m3/atom) is reasonably close to that obtained pre-
viously (0.0860 L/mol ≈ 1.43× 10−28 m3/atom) [42].

TABLE IX

The critical number density nc [atoms/m3] at the
maximum pressure Pmax [atm] for different tempera-
tures T [K], calculated from the virial equation of state.

T [K] nc [atoms/m3] Vc [m3/atoms] Pmax [atm]
95 1.6× 1027 6.25× 10−28 10.66
100 1.6× 1027 6.25× 10−28 11.59
105 1.6× 1027 6.25× 10−28 12.55

The equation of state was also used to calculate the
following thermodynamic properties:
a) Internal energy U and enthalpy H

The internal energy U for Ar can be calculated via the
following Eq. [6]:

U

NkBT
=

3

2
+

U ex

NkBT
. (21)

Our results for U and their comparison to the experimen-
tal values [40] are shown in Fig. 12. It is noted that U in-
creases as T increases since the repulsive forces increase.

Fig. 12. The internal energy U [J/mol] as a function of
temperature T [K] for two different number densities n.
The experimental data [40] at n ≈ 5.5× 1025 atoms/m3

are also shown.

The enthalpy H:
H = U + PV, (22)

H = U +NkBT (1 + nB (T )) . (23)
Figure 13 displays our results for H and their comparison
to the experimental values [40]. It is noted that H in-
creases as T increases and as n decreases.
b) Helmholtz free energy F(N, V, T)

This is given by [43]:
F = NkBT

[
ln
(
nλ3

)
− 1 + nB(T )

]
. (24)

Our results for F are illustrated in Fig. 14. It is noted

Fig. 13. The enthalpy H [J/mol] as a function of tem-
perature T [K] for two different number densities n.
The experimental data [40] are included for comparison
purposes.

that F increases as T increases and as n decreases.

Fig. 14. The Helmholtz free energy F [J/mol] ver-
sus temperature T [K] for three different number
densities n.

c) Entropy S
This is defined as:

S = −
(
∂F

∂T

)
V

. (25)

From Eq. (24):

S = NkB
[
ln
(
nλ3

)
− 1 + nB (T )

]
+

3

2
NkB

−nNkBT
(

dB (T )

dT

)
, or S = −F

T
+

3

2
NkB +

U ex

T
. (26)

Our results for S, together with the corresponding exper-
imental data [40], are shown in Fig. 15. It is noted that
S increases with increasing T and n.
d) Heat capacity CV

This is defined as:
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Fig. 15. The entropy S [J/(mol K)] as a function of
temperature T [K] for two different number densities n.
The experimental data [40] are included for comparison
purposes.

CV = T

(
dS

dT

)
V

. (27)

From Eq. (26):

CV = T

[
F

T 2
− 1

T

(
dF

dT

)
V

]
−NnkBT

(
dB (T )

dT

)
V

−NnkBT 2

(
d2B (T )

dT 2

)
V

,

CV = S +
F

T
+
U ex

T
−NnkBT 2

×
(
2C + 6DT + 12ET 2

)
. (28)

Our results for CV versus T are shown in Fig. 16. It is
clear that CV decreases as n increases, and that the gas
becomes more and more ideal as n decreases, as expected
on physical grounds.

Fig. 16. The heat capacity CV [J/(mol K)] versus tem-
perature T [K] for two different number densities n.

4. Conclusion

In this paper, extensive results for Ar–Ar scattering
in argon gas, using the GMF formalism, have been pre-
sented in the temperature range 87.3–120 K.

These results include the effective total and viscos-
ity cross-sections as well as the average cross-sections
and the quantum second virial coefficient. The cal-
culations have been undertaken using the HFD-B3
potential. There is a minima-and-maxima structure
in σT. The peaks in σT imply a resonance-like behav-
ior. The resonances are essentially bound states, but
with shorter lifetimes. These arise because the repulsive
angular-momentum barrier ∼ `(`+1)

r2 “screens” the short-
range repulsive part of the interatomic potential, thereby
allowing the interacting particles to “see” more attraction.

The minimum is evidence for the Ramsauer–Townsend
effect, occurring in the collision between two particles
when the total cross-section is a minimum and, therefore,
the mobility is a maximum.

In the quantum regime, it is concluded that Bq in-
creases as T increases. Bq is nearly constant at low n,
but starts to decrease as n increases, reaching a min-
imum then increasing again. Clearly, Ar gas exhibits
small quantum effects in the temperature range consid-
ered.

The virial equation of state for Ar gas is constructed
using the quantum second virial coefficient. The P–V –T
behavior is carefully investigated, from which the phase
(gas–liquid) transition is predicted.

The thermodynamic properties of Ar gas have been
determined using this equation of state. It is concluded
that, as expected, the gas becomes more and more ideal
as n decreases. Our calculated results for the internal
energy, enthalpy and entropy are in good agreement with
experimental data.

There are quite a few problems that one can pursue
starting with the present work. A first problem is the
calculation of the various cross-sections of other atomic
gases, such as Kr, as well as Ar–Ne and other inert gas
mixtures. A second problem is the calculation of the in-
verse Fourier transform of the T -matrix. This transform
represents the effective interaction in configuration space
and can shed further light on the properties of the sys-
tem. A third problem is the computation of the scatter-
ing properties of low-dimensional atomic gases (i.e., in
confined geometries). A final problem is the system-
atic investigation of the “interface” between classical and
quantum regimes in various atomic gases for different
temperature and pressure ranges.

References

[1] F. Mozaffari, J. Phys. Chem. Electrochem. 2, 2109
(2011).

[2] K. Gilles, Weld. Des. Fabric. 11, 12 (2006).
[3] A.E. Nasrabad, R. Laghaei, U.K. Deiters, J. Chem.

Phys. 121, 6423 (2004).

http://dx.doi.org/10.1063/1.1783271
http://dx.doi.org/10.1063/1.1783271


1140 I.F. Al-Maaitah et al.

[4] A.E. Nasrabad, R. Laghaei, J. Chem. Phys. 125,
084510 (2006).

[5] E. Vogel, B. Jäger, R. Hellmann, E. Bich, Mol. Phys.
108, 3335 (2010).

[6] F. Mozaffari, Z.Z. Sharabadi, J. Phys. Chem. Elec-
trochem. 1, 139 (2011).

[7] A.L. Gosman, R.D. McCarty, J.G. Hust, National
Standard Reference Data Series — National Bureau
of Standards 27, 1969.

[8] Ch. Tegeler, R. Span, W. Wagner, J. Phys. Chem.
Ref. Data 28, 779 (1999).

[9] F. Aitken, N. Bonifaci, A. Denat, F. Volino,
arXiv:1504.00633v1, 2015.

[10] H.B. Ghassib, R.F. Bishop, M.R. Strayer, J. Low
Temp. Phys. 23, 393 (1976).

[11] R.F.Bishop, H.B.Ghassib, M.R. Strayer, Phys.
Rev. A 13, 1570 (1976).

[12] B.R. Joudeh, A.S. Sandouqa, H.B. Ghassib, M.K. Al-
Sugheir, J. Low Temp. Phys. 161, 348 (2010).

[13] H.B. Ghassib, A.S. Sandouqa, B.R. Joudeh,
S.M. Mosameh, Canad. J. Phys. 92, 997 (2014).

[14] S.M. Mosameh, A.S. Sandouqa, H.B. Ghassib,
B.R. Joudeh, J. Low Temp. Phys. 175, 523 (2014).

[15] R.A. Aziz, M.J. Slaman, J. Chem. Phys. 92, 1030
(1990).

[16] S. Geltman, Topics in Atomic Collision Theory,
Krieger Publ. Co., Florida 1997.

[17] E. Merzbacher, Quantum Mechanics, 3rd ed., Wiley,
New York 1998.

[18] R.J. Kanzleiter, D.P. Stotler, C.F.F. Karney,
D. Steiner, Phys. Plasmas 7, 5064 (2000).

[19] M.J. Wright, D. Bose, G.E. Palmer, E. Levin,
AIAA J. 43, 2558 (2005).

[20] B.R. Joudeh, Physica B Condens. Matter 421, 41
(2013).

[21] M.J. Jamieson, A. Dalgarno, J.N. Yukich, Phys.
Rev. A 46, 6956 (1992).

[22] R.P. Feynman, Statistical Mechanics, Benjamin,
Reading, MA 1992.

[23] E.V.L. Mello, J.J. Rehr, O.E. Vilches, Phys. Rev. B
28, 3759 (1983).

[24] E. Beth, G.E. Uhlenbeck, Physica 3 8, 729 (1936).
[25] V. Seguin, H. Guignes, C. Lhuillier, Phys. Rev. B

36, 141 (1987).
[26] S.P. Dardi, S.J. Dahler, Theor. Chem. Acta 82, 117

(1992).
[27] A.L. Fetter, J.D. Walecka, Quantum Theory of

Many-Particle Systems, McGraw-Hill, New York
1971.

[28] H.T. Stoof, M. Bijlsma, M. Houbiers, J. Res. Natl.
Inst. Stand. Technol. 101, 443 (1996).

[29] C. Kittel, H. Kroemer, Thermal Physics, Freeman,
New York 1980.

[30] R. Feltgen, H. Pauly, F. Torello, H. Vehmeyer, Phys.
Rev. Lett. 30, 820 (1973).

[31] A.F. Borghesani, J. Electrostat. 53, 89 (2001).
[32] A.S. Sandouqa, H.B. Ghassib, B.R. Joudeh, Chem.

Phys. Lett. 490, 172 (2010).
[33] W.A. Kampe, D.E. Oates, W. Schrader, H.G. Ben-

newitz, Chem. Phys. Lett. 18, 323 (1973).
[34] T.K. Lim, S.Y. Larsen, J. Chem. Phys. 74, 4997

(1981).
[35] R.S. Grace, W.M. Pope, D.L. Johnson, J.G. Skofron-

ick, Phys. Rev. A 14, 1006 (1976).
[36] P. Cantini, M.G. Dondi, G. Scoles, F. Torello,

J. Chem. Phys. 56, 1946 (1972).
[37] R. Feltgen, H. Krist, K.A. Köhler, H. Pauly,

F. Torello, J. Chem. Phys. 76, 2360 (1982).
[38] M.G. Dondi, G. Scoles, F. Torello, J. Chem. Phys.

51, 392 (1969).
[39] P.J. Gans, Phys. Chem. l 25, 0651 (1994).
[40] B.R. Stewart, T.R.J. Jacobsen, J. Phys. Chem. Ref.

Data 18, 639 (1989).
[41] L.H. Nosanow, J. Low Temperature Phys. 26, 613

(1977).
[42] K.C. Kan, Chin. J. Phys. 17, 32 (1979).
[43] F. Reif, Fundamentals of Thermal Physics, McGraw-

Hill, New York 1965.

http://dx.doi.org/10.1063/1.2338310
http://dx.doi.org/10.1063/1.2338310
http://dx.doi.org/10.1080/00268976.2010.507557
http://dx.doi.org/10.1080/00268976.2010.507557
http://dx.doi.org/10.1063/1.556037
http://dx.doi.org/10.1063/1.556037
http://arXiv.org/abs/1504.00633v1
http://dx.doi.org/10.1007/BF00116928
http://dx.doi.org/10.1007/BF00116928
http://dx.doi.org/10.1103/PhysRevA.13.1570
http://dx.doi.org/10.1103/PhysRevA.13.1570
http://dx.doi.org/10.1007/s10909-010-0211-6
http://dx.doi.org/dx.doi.org/10.1139/cjp-2013-0411
http://dx.doi.org/10.1007/s10909-013-1079-z
http://dx.doi.org/10.1063/1.458165
http://dx.doi.org/10.1063/1.458165
http://dx.doi.org/10.1063/1.1321018
http://dx.doi.org/10.2514/1.16713
http://dx.doi.org/10.1016/j.physb.2013.04.014 
http://dx.doi.org/10.1016/j.physb.2013.04.014 
http://dx.doi.org/10.1103/PhysRevA.46.6956
http://dx.doi.org/10.1103/PhysRevA.46.6956
http://dx.doi.org/10.1103/PhysRevB.28.3759
http://dx.doi.org/10.1103/PhysRevB.28.3759
http://dx.doi.org/10.1016/S0031-8914(36)80346-2
http://dx.doi.org/10.1103/PhysRevB.36.141
http://dx.doi.org/10.1103/PhysRevB.36.141
http://dx.doi.org/10.1007/BF01113133
http://dx.doi.org/10.1007/BF01113133
http://dx.doi.org/http://physics.nist.gov/Pubs/Bec/j4stoof.pdf 
http://dx.doi.org/http://physics.nist.gov/Pubs/Bec/j4stoof.pdf 
http://dx.doi.org/doi:10.1103/physrevlett.30.820
http://dx.doi.org/doi:10.1103/physrevlett.30.820
http://dx.doi.org/DOI:10.1016/S0304-3886(01)00133-4
http://dx.doi.org/doi:10.1016/j.cplett.2010.03.052
http://dx.doi.org/doi:10.1016/j.cplett.2010.03.052
http://dx.doi.org/doi:10.1016/0009-2614(73)80179-4
http://dx.doi.org/10.1063/1.441751 
http://dx.doi.org/10.1063/1.441751 
http://dx.doi.org/DOI:10.1103/PhysRevA.14.1006
http://dx.doi.org/10.1063/1.1677479
http://dx.doi.org/10.1063/1.443264
http://dx.doi.org/10.1063/1.1671737
http://dx.doi.org/10.1063/1.1671737
http://dx.doi.org/http://scholar.chem.nyu.edu/0652/notes/pdf/realgas94.pdf
http://dx.doi.org/10.1063/1.555829
http://dx.doi.org/10.1063/1.555829
http://dx.doi.org/10.1007/BF00655434
http://dx.doi.org/10.1007/BF00655434
http://dx.doi.org/http://psroc.org/cjp/issues.php?vol=17&num=1

