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Based on the density functional theory and the quasi-harmonic Debye model, the structural and thermody-
namic properties of I-4m2-BCN have been studied in this paper. Some structural parameters are presented in this
work. All of these results are in excellent agreement with the other available results. The anisotropy of elastic
properties are also studied systematically in this paper. Finally, the thermodynamic properties of I-4m2-BCN
are also researched through the quasi-harmonic Debye model. The relations among the thermal expansion α, the
Debye temperature ΘD, the heat capacity CV and CP , the Grüneisen parameter γ, entropy S, and the Gibbs free
energy G with pressure P and temperature T are studied systematically.
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1. Introduction

New covalent boron–carbon–nitrogen (BCN) materi-
als and related nanostructures occupy a privileged po-
sition amongst candidates for high-temperature optical,
electrical, and mechanical applications [1]. In particu-
lar, ternary boron carbonitride (BCxNy) solid solutions
have attracted considerable interest in the last decades
as alternatives to increase the performance of elemen-
tal (diamond, graphite, α-rh boron, etc.) and binary
(c-BN, B4C, h-BN, h-CNx, etc.) phases of the BCN
system. Due to its high technological potential, BCxNy

thin films have been created by several chemical [2–13]
deposition methods. Recent experiments announced suc-
cessful synthesis of cubic boron–carbonitride compounds
BC2N with an ultra hardness second only to diamond.
In that present letter, of Zhang et al. [14], their results
reveal that, despite the large elastic constants, compo-
sitional anisotropy and strain dependent bonding char-
acter impose limitation on their strength. Consequently,
the hardness of this BC2N phase is lower than that of
c-BN, the second hardest material as we all know. When
the BCN films were deposited by using ion beam as-
sisted evaporation, Zhou et al. [15] have reported the
lower evaporation rate of B4C target, the smaller sur-
face roughness and higher nanohardness of BCN coat-
ings. But if the BCN films were deposited by using dual
ion beam sputtering (DIBS), their hardness was mainly
affected by carbon sputtering power, working pressure
and boron sputtering power in sequence [16].

The structural, elastic, and elastic anisotropy proper-
ties of R3-B2C [17] and I4mm-B3C [18] were investigated
using first-principles density functional calculations by

∗corresponding author; e-mail: mjxing168668@163.com

Fan et al. The Vickers hardness of R3-B2C and I4mm-
B3C is 51 GPa and 42 GPa [19], respectively. There-
fore, R3-B2C and I4mm-B3C are potential superhard
materials.

The thermodynamic properties of R3-B2C and I4mm-
B3C were investigated utilizing the quasi-harmonic De-
bye model. Chang et al. [20] have studied the thermo-
dynamic properties of the potential superhard β-BC2N
in orthorhombic structure by using ab initio plane-wave
pseudopotential density functional theory method. They
investigate through the quasi-harmonic Debye model the
thermodynamic properties of β-BC2N. All of these re-
sults are in excellent agreement with the available ex-
perimental and other theoretical results. Recently, the
mechanical and electronic properties of P3m1-BCN [21]
have been studied by using first principles calculations.
The anisotropy studies of Young’s modulus, shear modu-
lus and Poisson’s ratio show that P3m1-BCN exhibits a
large anisotropy. Electronic structure study shows that
P3m1-BCN is an indirect semiconductor with band gap
of 4.10 eV. In addition, P3m1-BCN still keeps brittle in
this pressure range from 0 to 100 GPa.

Zhang et al. [22] reported a developed methodology
to design superhard materials for given chemical systems
under external conditions. Based on density function the-
ory in the frame of the local density approximation and
the generalized gradient approximation, Fan et al. [23]
have systematically studied the structural stability, elas-
tic properties, and mechanical properties of BCN com-
pounds with Imm2 and I-4m2 phases. They found that
I-4m2-BCN is mechanically and dynamically stable. In
this work, the researchers will focus on studying the ther-
modynamic properties and elastic anisotropic properties
of BCN in I-4m2 phase (space group: I-4m2, No. 119)
based on quasi-harmonic Debye model and the elastic
anisotropy measures (ELAM).
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2. Theoretical method

2.1. Total energy electronic structure calculations

In our calculations, the structural optimization and
property predictions of the BCN polymorphs were per-
formed using the DFT [24, 25] with the generalized gra-
dient approximation (GGA) parametrized by Perdew,
Burke and Ernzerhof (PBE) [26] as implemented in
the Cambridge Serial Total Energy Package (CASTEP)
code [27]. For I-4m2-BCN, we used a plane-wave basis
set with energy cut-off 500 eV, used with GGA. For the
Brillouin-zone sampling, the 6 × 6 × 4 Monkhorst–Pack
mesh [28] is adopted. The Broyden–Fletcher–Goldfarb–
Shanno (BFGS) [29] minimization scheme was used in
geometry optimization. The self-consistent convergence
of the total energy is 5 × 10−6 eV/atom, the maximum
force on the atom is 0.01 eV/Å, the maximum ionic dis-
placement within 5 × 10−4 Å and the maximum stress
within 0.02 GPa. From these calculations, the energy
zero for a unit formula is obtained, in Ha per molecule
and volume per unit formula, in Bohr3 per molecule.

2.2. The quasi-harmonic Debye model

For the thermodynamic properties of I-4m2-BCN, the
quasi-harmonic Debye model [30–33] is applied. In the
quasi-harmonic Debye model, the non-equilibrium Gibbs
function G∗(V : P, T ) is given by

G∗(V : P, T ) = E(V ) + PV +Avib(ΘD(V ) : T ). (1)
Here E(V ) represents the total energy per unit cell for
I-4m2-BCN, ΘD represents the Debye temperature, and
the vibrational Helmholtz free energy Avib can be writ-
ten by [34–39]:

Avib(ΘD(V ) : T ) =

nKT

[
9

8

ΘD

T
+ 3 ln(1− e−ΘD/T )−D

(
ΘD

T

)]
. (2)

Here D(ΘD/T ) represents the Debye integral. Assume
that y is equal to ΘD/T , so

D(y) =
3

y3

∫ y

0

x3

ex − 1
dx, (3)

n represents the number of atoms per formula unit and
ΘD is expressed as [34]:

ΘD =
h

2πk
[6π2V 1/2n]1/3f(ν)

√
Bs

M
, (4)

whereM represents the molecular mass per formula unit,
Bs represents the adiabatic bulk modulus, the Poisson ra-
tio v is taken as 0.11 in our calculation, and f(v) is given

by [35, 36]:

f(v) = 3

[
2

(
2

3

1 + v

1− 2v

)3/2
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1

3

1 + v
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Therefore, the non-equilibrium Gibbs function G∗(V :
P, T ) as a function of (V : P, T ) can be minimized with
respect to volume V as follows:(

∂G∗(V : P, T )

∂V

)
P,T

= 0. (6)

By solving Eq. (6), the isothermal bulk modulus and
other thermal properties such as heat capacity at con-
stant volume CV , the heat capacity at constant pres-
sure CP , and thermal expansion α are respectively taken
as [40]:

BT = −V
(
∂P

∂V

)
= V

(
∂2G∗(V : P, T )

∂V 2

)
P,T

=

−x−2B0 e
a(1−x)f(x), (7)

x =

(
V

V0

)1/3

, (8)

f(x) = x− 2− ax(1− x), (9)
where V0 = V (0,T ) is the zero-pressure equilibrium vol-
ume, B0 is the zero-pressure bulk modulus, and a is given
through the relation

a = 3(B′0 − 1)/2, (10)
where B′0 represents the first pressure derivative. In ad-
dition, B0, lnB′0 and α are the fitting parameters. Also

CV = 3nk

[
4D

(
ΘD

T

)
− 3ΘD/T

eΘD/T − 1

]
, (11)

Cp = CV (1 + αγT ), (12)

α =
γCV

BTV
, (13)

where CV represents the heat capacity and γ represents
the Grüneisen parameter and it is expressed as

γ = −(d lnΘD(V )/d lnV ). (14)

3. Results and discussion

3.1. Structural properties and elastic properties

The calculated lattice parameters for I-4m2-BCN, are
presented in Table I. I-4m2-BCN has a tetragonal sym-
metry that belongs to the I-4m2 space group. For I-4m2-
BCN, the calculated lattice parameters are in excellent
agreement with the reported calculated results [22, 23].

TABLE I

Calculated equilibrium lattice parameters a, c, V , elastic constants Cij (in GPa) for I-4m2-BCN.

Phase Method a c V C11 C12 C13 C33 C44 C66 B G

I-4m2 GGAa 2.56 10.99 18.07 858 49 135 756 379 330 344 359
LDAa 2.53 10.84 17.34 936 52 155 806 424 346 376 386
GGAb 2.57 11.00 18.12

athis work, bRef. [22].
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The lattice parameters and elastic constants Cij , bulk
modulus B, and shear modulus G were calculated in
present works, using the Voigt–Reuss–Hill approxima-
tion [41], with GGA for I-4m2-BCN are also presented
in Table I. The criteria for mechanical stability of tetra-
gonal phase are given by [42]: Cii > 0, i = 1, 3, 4, 6;
(C11−C12) > 0; (C11+C33−2C13) > 0; [2(C11+C12)+
C33 + 4C13] > 0. The calculated elastic constants of I-
4m2-BCN indicated that it is mechanically stable due to
the satisfaction of the mechanical stability criteria.

Fig. 1. Pressure (a) and temperature (b) dependence
of the equilibrium volume for the I-4m2-BCN.

Fig. 2. The equilibrium volume V/V0 of I-4m2-BCN
as a function of pressure at T = 0, 200, 400, 600, and
800 K.

Total energy calculations are done as a function of in-
creasing and reducing unit cell volume around equilib-
rium cell volume (V0) and obtained data for E−V by fit-
ting it into the Murnaghan equation of states (EOS) [43].
Figure 1a shows the relations of the volume as a function
of pressure P up to 60 GPa at T = 0, 200, 400, 600, and
800 K, and the relationship between volume V and tem-

perature T at different pressures P = 0, 30, and 60 GPa
are shown in Fig. 1b. In Fig. 1a, volume V decreases
with pressure at certain temperature. One can obviously
see that when T < 400 K at 0 GPa, V keeps nearly con-
stant; when T > 400 K, V increases as T increases. From
Fig. 1 we can find that the effect of the temperature T
on the volume V is less significant than that of pressure
P on it. The primitive cell volumes V/V0 of I-4m2-BCN
as a function of pressure P at T =0, 200, 400, 600, and
800 K are shown in Fig. 2. Correspondingly, in Fig. 2,
when T < 400 K, the primitive cell volume V/V0 of I-
4m2-BCN has a little change; when T > 400 K, the cell
volume V/V0 changes obviously as T increases. From
Fig. 2, it is found that the effect of temperature on the
ratio V/V0 is not as significant as that of pressure in our
calculated pressure and temperature ranges.

3.2. Thermodynamic properties

The investigation on the thermodynamic properties of
solids under high pressure and high temperature is an in-
teresting topic in the condensed matter physics. The in-
vestigations on the thermodynamic properties of I-4m2-
BCN under high temperature and pressure are deter-
mined by the quasi-harmonic Debye model. The ther-
modynamic properties of I-4m2-BCN are determined in
the temperature range from 0 to 800 K where the quasi-
harmonic model remains fully valid. Meanwhile, the
pressure effect is studied in the range 0–60 GPa.

Fig. 3. Variation of the isothermal bulk modulus of I-
4m2-BCN versus pressure and temperature.

Here we focus our attention on the dependence of
isothermal bulk modulus BT on pressure and tempera-
ture through the quasi-harmonic Debye model. Figure 3a
shows the relations of the isothermal bulk modulus BT

as a function of pressure P up to 60 GPa at T = 0,
200, 400, 600, and 800 K, and the relationship between
isothermal bulk modulus BT and temperature T at dif-
ferent pressures P = 0, 30, and 60 GPa are shown in
Fig. 3b. In Fig. 3a, isothermal bulk modulus BT in-
creases with pressure at certain temperature. In both



Elastic Anisotropic and Thermodynamic Properties of I-4m2-BCN 1127

Fig. 4. Variation of the Debye temperature of I-4m2-
BCN versus pressure and temperature.

Fig. 5. Variation of the Grüneisen parameter γ of I-
4m2-BCN versus pressure and temperature.

Fig. 6. Variation of the Gibbs free energy of I-4m2-
BCN versus pressure and temperature.

Fig. 7. Variation of the entropy of I-4m2-BCN versus
pressure and temperature.

Fig. 8. Variation of the thermal expansion of I-4m2-
BCN versus pressure and temperature.

Fig. 9. Variation of the heat capacity of I-4m2-BCN
versus pressure and temperature.
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Fig. 3a and b, it can be seen that isothermal bulk mod-
ulus BT remains almost unchanged with temperature at
pressures P = 30 GPa, and 60 GPa. It can be obviously
seen that with T > 200 K, BT remains basically un-
changed; with T > 200 K, BT decreases as T increases.
As well as shown in Fig. 3, it can be find out that the
effect of the temperature T on the isothermal bulk mod-
ulus is less significant than that of pressure P on it.

In the quasi-harmonic Debye model, the Debye tem-
perature and the Grüneisen parameter are the two key
quantities. The Debye temperature relates closely to
many physical properties of solids, such as specific heat,
dynamic properties, and melting temperature. The cal-
culated relationships of the Debye temperature on pres-
sure and temperature are plotted in Fig. 4. Shown in
Fig. 4a, it can be seen that the Debye temperature in-
creases monotonously at given temperature. It is clearly
seen that the Debye temperature decreases with temper-
ature at certain pressure shown in Fig. 4b. The lower the
pressure is, the faster the Debye temperature decreases.
Varying temperature from 0 to 800 K, the Debye temper-
ature decreases 2.36% at 0 GPa and 0.60% at 60 GPa.

The Grüneisen parameter γ, which describes the alter-
ation in a crystal lattices vibration frequency, can reason-
ably predict the anharmonic properties of a solid, such
as the temperature dependence of phonon frequencies
and lattice volume. Usually, the Grüneisen parameter
is positive and lies in the range 1.5 ± 1.0. The calcu-
lated relationships of the Grüneisen parameter on pres-
sure and temperature are plotted in Fig. 5. It is found
that the Grüneisen parameter decreases with pressure
at a given temperature, but increases with temperature
at a given pressure. The Grüneisen parameter almost
decreases linearly with pressure. At low temperature
(T < 250 K), the Grüneisen parameter is constant, as
well as increases linearly with temperature at high tem-
perature (T > 400 K).

In thermodynamics, the Gibbs free energy [44] is a
thermodynamic potential that measures the “usefulness”
or process-initiating work obtainable from a thermody-
namic system at a constant temperature and pressure.
When a system varies from a well-defined original state
to a well-defined final state, the Gibbs free energy equals
the work exchanged by the system with its surroundings,
minus the work of the pressure forces, during a reversible
transformation of the system from the same initial state
to the same final state [45]. Figure 6a shows the Gibbs
free energy Gibbs free energy of I-4m2-BCN as a function
of pressure at different temperatures, and Fig. 6b shows
Gibbs free energy of I-4m2-BCN as a function of temper-
ature at different pressures. It can be seen that at a given
temperature, Gibbs free energy increases widely with the
increment of the pressures. The Gibbs free energy be-
comes level with increasing temperature (T < 200 K)
and then decreases sharply (T > 200 K).

In thermodynamics, entropy S is a measure of the
number of specific ways in which a thermodynamic sys-
tem may be arranged, often taken to be a measure of

disorder, or a measure of progressing towards thermo-
dynamic equilibrium. The variation of the entropy S
versus temperature and pressure for I-4m2-BCN is dis-
played in Fig. 7. It is shown that S decreases with the in-
crease of pressure and increases sharply with an increas-
ing temperature. As temperature increases, the entropy
increases quickly at lower pressure. As pressure increases,
the entropy decreases quickly at higher temperature and
as temperature increases, the entropy increases quickly
at lower pressure.

The coefficient of thermal expansion α describes how
the size of an object changes with a change in temper-
ature. Specifically, it measures the fractional change in
size per degree of change in temperature at a constant
pressure. For solids, one might only be concerned with
the change along a length, or over some area. The cal-
culated relationships of thermal expansion coefficient α
on pressure and temperature are plotted in Fig. 8 for
I-4m2-BCN. It can be noted that, at a given pressure,
α increases sharply with the increase of temperature up
to 100 K. When T > 100 K, α gradually approaches a
linear increase with enhanced temperature which means
that the temperature dependence of α is large at a high
temperature. For a given temperature, α decreases with
the increase of pressure. At 300 K and zero pressure, α
is equal to 0.95 × 10−5 K−1. The effects of pressure on
the thermal expansion coefficient are very small at low
temperatures, and the effects increase with the increase
of temperature.

The temperature dependence of the calculated heat
capacity CV and CP at various pressures are shown in
Fig. 9. Due to the anharmonic approximations of the De-
bye model, the heat capacity CV and CP increase rapidly
with pressure. At low temperature (T < 400 K), the dif-
ference between CV and CP is slight, CV is proportional
to T 3. It is also interesting to note that the values of CV

follow the Debye model at low temperature due to the
anharmonic approximations. In a word, it can be seen
that the heat capacity increases with the temperature at
certain pressure and decreases with the pressure at cer-
tain temperature. The influences of the temperature on
the heat capacity are much more significant than that of
the pressure on it.

3.3. Anisotropic properties

Using the elastics anisotropy measures [46], we can
obtain the calculated Poisson ratio, shear modulus and
Young modulus along different directions as well as the
projections in different planes. It is the Poisson ratio
that was first focused on, and Fig. 10a–c displays the
2D representation of the Poisson ratio in the xy, xz, and
yz planes for I-4m2-BCN, respectively. The black rep-
resents maximum and red represents minimum. It was
found that 0.03 ≤ v ≤ 0.17, showing that v remains
positive. In order to quantify the anisotropy, we cal-
culated the shear modulus for all possible directions of
shear strain, the 2D representation of shear modulus in
the xy, xz, and yz planes for I-4m2-BCN are shown in
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Fig. 10. 2D representation of the Poisson ratio in the
xy plane (a), xz plane (b) and yz plane (c) for I-4m2-
BCN. 2D representation of shear modulus in the xy
plane (d), xz plane (e), and yz plane (f) for I-4m2-BCN.

Fig. 11. 2D representation of the Young modulus in
the xy plane (a), xz plane (b) and yz plane (c) for I-
4m2-BCN.

Fig. 10d–f, respectively. The black represents maximum
and red represents minimum. It was observed that shear
modulus varies between 329 and 405 GPa, the average
value of all directions is 356 GPa. Finally, it is focused
on Young’s modulus, which is shown the 2D represen-
tation of Young’s modulus in the xy, xz, and yz planes
for I-4m2-BCN in Fig. 11a–c, respectively. It is clearly
visible that Young’s modulus for this material is large
anisotropic, with a minimal value of Emin = 715 GPa and
a maximum of Emax = 846 GPa. So I-4m2-BCN exhibits
a large anisotropy in its Poisson ratio, shear modulus and
the Young modulus.

4. Summary

In summary, a theoretical study on the thermodynamic
properties of I-4m2-BCN at high pressure and tempera-
ture has been undertaken using the quasi-harmonic De-
bye model. The structural properties in the I-4m2 phase
are obtained using the total energy as a function of vol-
ume and V/V0. The calculated elastic constants are satis-
fying the mechanical stability conditions. It is also found
that the pressure and temperature have important ef-
fects on the heat capacity, entropy, and the Gibbs free
energy. Other thermodynamic properties including the
Debye temperature, the Grüneisen parameter, and the

thermal expansion coefficients of I-4m2-BCN are pre-
dicted under high temperature and high pressure. High
pressure leads to a smaller Grüneisen parameter, heat
capacity, and thermal expansion coefficients at a given
temperature. On the contrary, high temperature leads
to a larger Grüneisen parameter, a larger heat capac-
ity, and a larger thermal expansion coefficient at certain
pressure. However, there are no experimental data avail-
able related to the thermodynamic properties of I-4m2-
BCN at high pressure and high temperature. Moreover,
I-4m2-BCN exhibits a large anisotropy in its Poisson’s
ratio, shear modulus and Young’s modulus. Hence, we
hope that our work can give more insight into the ther-
modynamic properties of I-4m2-BCN and will stimulate
further experimental study on it.
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