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1. Introduction

Agent-based computational models of economy of-
fer an interesting possibilty for studying an application
of physical concepts to financial and commodity mar-
kets [1]. Some of fruitful ideas taken from physics in-
clude scaling and criticality in a stochastic multi-agent
models [2], thermodynamics and statistical physics of
the markets [3, 4] and role of the Ising model of the
phase transition for understanding social and financial
systems [1].

Our aim is to study a variation of an agent-based
computational model introduced by Yasutomi [5] twenty
years ago. The model has been investigated later in
follow-up research by Yasutomi himself [6] and revis-
ited by Górski et al. (2010) [7]. Arguably Yasutomi’s
agent-based model of a commodity market could be per-
ceived as a toy model rather than a fully fledged agent-
based computational economics approach. Nonetheless,
it proved to be quite useful for exposing some univer-
sal features of the complex systems in general, and eco-
nomics markets in particular. Application of Yasutomi’s
approach to modelling the commodity market allowed to
reproduce some real market behavior with statistical sig-
natures of the money emergence phenomena [8] as well as
provided some evidence of the competition of commodi-
ties for a dominant status of the so-called commodity-
based money [9].

In this work we will investigate a modification of the
exchange protocol, allowing for a more flexible commod-
ity exchange than just one-to-one barter swap. It is ex-
pected that the toy model for commodity market would
become more realistic and would allow for emergence of
varying in time exchange rates among commodities. In a
realistic market the number of traders N is much greater
than the number of different types of commodities M .
We also consider practical implications of having free-
dom to study numerically general cases N ≥ M . This
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would allow for a fresh look at the problem of numeri-
cal convergence of results and finite size scalings, where
dominant commodity becomes well pronounced.

In the following section, we describe the model used in
our present research, with emphasis on introduced modi-
fications. Then we present results of the numerical simu-
lations with the focus on variation with time of the com-
modity strength and signatures heralding existence of a
single dominant commodity on the market. We will also
look at a possibility of finding some scalings due to the
finite size of the studied model. Finally we present a
summary and draw some conclusions.

2. The agent-based computational model

The model adopted in the present research is essen-
tially a modification of an agent-based model introduced
by Yasutomi (1995). We consider a new protocol of ex-
change commodities. Instead of a generic one-to-one ex-
change, a simple idea of the value-for-value exchange be-
tween trading agents is introduced. This is an attempt
to include the fact that swapped commodities may have
different unit values as the model commodity market
evolves in time. This could in principle allow for our
economics toy model to be more flexible with respect to
emergence of natural commodity exchange rates in time,
and therefore more suitable for the model dynamics in-
vestigation. Another important point emphasised by the
present model is allowing for taking independently pa-
rameters describing the size of the model. Instead of
having, as in previous works (see e.g. [9]), the same num-
ber of agents and commodity types, we allow now for
considering these sizes independently. Indeed, in a real
situation on the market we have many more traders than
commodity types.

In the following subsection our present model is de-
scribed in more detail. In the description we will empha-
sise introduced modifications.

2.1. The description of the present model

In the present agent-based model of the commodity
market, there is an ensemble of N trading agents and M
different types of commodities, which could be supplied
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and consumed by agents (N ≥ M). There are some mi-
croscopic rules for trading in this toy economic model,
which allow to determine the dynamics of the model by
means of the system observables, obtained by taking av-
erages over statistical ensembles.

A generic single transaction on our toy commodity
market consists of a few steps, including: a random choice
of an agent, matching a co-trader for the chosen agent,
their interaction by means of exchanging certain amount
of commodities according to the preferences, averaged
market opinion, as well as currently deemed value of
swapped goods. Finally, there is a stage of the consump-
tion and the production of the commodities. A round
of N such transactions (which is equal to the number of
agents) is called a turn and sets a unit of time t.

Trading agents k = 1, 2, . . . , N , are equipped with
varying in time t an integer number of j-th commodity
(j = 1, 2, . . . ,M) denoted by Pt(j, k), randomly chang-
ing preferences Wt(j, k) as to the most wanted commod-
ity (in our model there is only one wanted commodity
by an agent, who is not the supplier of that commod-
ity) and evolving views (the market opinions) Vt(j, k)
on the value of any particular commodity type. The
matched pair of the agent and its co-trader increase their
own views on any commodity in case their demands were
not satisfied in the previous transaction. Hence values
Vt(j, k) contain some sort of memory on the past trans-
actions. Subsequently they average their mutual views
on each particular commodity. Varying in time values
Vt(j, k) are normalized with respect to the total number
of commodity types (denoted by M) in such a way that
1 ≤ Vt(j, k) ≤ M . The number of commodity types M
is less than or equal to the number of agents. If N > M ,
more than one agent can supply or consume the same
commodity.

The commodity j enters the wish-list of the agent k
also when Vt(j, k) ≥ T . That is, once a view on a par-
ticular commodity becomes equal to or greater than a
certain macroscopic model parameter T , Vt(j, k) ≥ T ,
the commodity j becomes also wanted by a trading agent
k. The global macroscopic activation of interest param-
eter is called the threshold parameter T . This threshold
parameter serves therefore as an external, global market
view on the degree of attractiveness of such commod-
ity. Recall that each trader is also driven by its internal
(individual and independent) need for a single randomly
chosen commodity given by Wt(j, k).

However, unlike previously implemented (see
e.g. [5, 8, 9]), when both traders have an unequal
number of commodities of different types on their wish-
lists, they consider the total value of the commodities
to be exchanged. They exchange commodities on their
wish-lists, starting from items of the highest value. They
keep exchanging integer number of commodities until
they swap approximately the same value from their
demand-lists. The value of the commodity j deemed by
the k-th agent is proportional to the value of the view
on that commodity Vt(j, k) at a given turn t shared by

the k-th agent. The same commodity value evaluation
made by l-th agent is based on its own view Vt(j, l).

At the end of each transaction, the desired commodi-
ties are fully consumed (expended) by a trading pair of
agents. If there is no self-supplied (produced) commodity
in the portfolio of any of these two agents, then a unit of
such commodity is produced. The statistical ensemble is
created out of a certain number of random initial condi-
tions for initially preferred commodity. Thus a number
of “trajectories” for the system is obtained through dy-
namics arising from different W0(j, k) values in trading
time measured in turns. Here it is also worth pointing
out that for any given randomly chosen initial condition,
there is also an additional stochastic component due to
a random choice of pairs of trading agents as described
above.

2.2. The commodity strength

Let us define the commodity strength V
(j)
CS (t) in a

straightforward way [9], as normalized view on commod-
ity j, averaged over the agent’s ensemble

V
(j)
CS (t) :=

1

N

∑
k

Vt(j, k). (1)

If above defined commodity strength is maximized for a
certain j = jmax:

Vmax(t) := max
j

{
V

(j)
CS (t)

}
, (2)

than we can say that j = jmax commodity reached the
status of the dominant commodity.

Therefore such Vmax defines the dominant commodity
strength, which could be regarded as a commodity based
money as discussed in [7, 8].

3. The results

In the following, we will consider numerical simulations
of the investigated model.

3.1. The dominant commodity strength

In order to study the dominant commodity strength
(cf. Eq. (2)) originating in the model, we have made
a statistical averaging over initial conditions (“trajecto-
ries”) after certain time t = R, defining the range of time
evolution observations.

In Fig. 1 the scaled strength of the money status ver-
sus threshold T is shown for two cases, with numbers
N = 100 and N = 200 of agents (here M = N) taken
for the simulations of our model market. The money
strength is averaged for nr = 100 realizations after
R = 1000 turns of the evolution time in each case. The
plot shows the influence of the exchange protocol modi-
fication. New data are denoted by filled points, whereas
the data coming from the previously studied model [9]
are denoted by open points. The dominant commodity
strength Vmax is rescaled here by the model size N to
make the comparison easier. Error bars show the disper-
sion of the numerically obtained data and correspond to
a single standard deviation.
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Fig. 1. The dominant commodity strength Vmax(R) af-
ter the time range of observation of R = 1000 turns,
averaged over nr = 100 realizations, versus the thresh-
old T . The data for the present model are represented
by filled symbols, whereas open symbols refer to results
with the exchange protocol discussed previously in [9].
The two sets of data illustrate the quantitive signifi-
cance of the adopted change. Results for the presently
investigated model are plotted for various numbers of
agents N with the number of commodities M = N : cir-
cles — N = 100, triangles — N = 200. Error bars
correspond to a single standard deviation, estimated for
the nr = 100 realizations. Note that, for the purpose
of this comparison, the dominant commodity strengths
have been rescaled by the parameter N .

The figure presents a general outlook on the dominant
commodity emergence from the “barter trade” phase to
the phase of a “single universal commodity” in the sense
given by Eq. (2). The strong ordered phase (the shape
and position of the maximum) with clearly pronounced
dominant commodity weakly depends on N . This weak
dependence is due to a system finite-size effects and con-
sidered time of the commodity market simulations.

One can see that the dominant commodity strength
Vmax(t) as defined by Eq. (2) clearly indicates a regime
of threshold values for approximately 2 ≤ T ≤ 6. Partic-
ular modification in the exchange protocol decreases the
maximum value of the commodity strength which could
be reached with the threshold variation. However a gen-
eral qualitative model behavior seems to be unchanged.

It means that the general agent-based model, consid-
ered here, is to some extent robust with respect to varia-
tions of its microscopic rules governing the agents’ inter-
actions. Obviously this is by no means a total surprise, as
there is a great deal of known examples of complex physi-
cal systems, where for certain regimes of parameters, the
particular nature of interactions is not important when
one is interested in studying universal statistical proper-
ties (see e.g. [10]).

Now let us discuss the problem of the influence of finite-
size model effects on the results obtained. Figure 1 sug-
gests that the finite-size effects could be less pronounced
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Fig. 2. The dominant commodity strength Vmax(R) af-
ter the time range of observation of t = R = 104 turns,
averaged over nr = 100 realizations, versus the thresh-
old T . Data shown for various numbers of agents N
equal to the number of commodities M (N = M) in
the model: asterisks correspond to N = 50, circles
— N = 100, triangles — N = 200, and squares —
N = 400. Note that, for the purpose of this comparison,
the dominant commodity strengths have been rescaled
by the parameter N .

in the model with changed interactions. The difference
between maximum attainable values of the dominant
commodity strength for the case of N = M = 100 and
N = M = 200 seems to be less pronounced for the case
of agents practising value-for-value exchange than for the
case of just one-to-one exchange. Nevertheless, the vari-
ation with the model size is still visible if we compare
results of our present model for a wider range of N values
— see Fig. 2, showing the averaged dominant commodity
strengths in the case of 10 times longer evolution times.

This observation brings some fundamental questions
about existence of the thermodynamic limit to a local
or the global equilibrium state, and possibly the rate of
convergence to such states, with the model size N = M
growing.

Figure 2 presents the averaged commodity strength af-
ter R = 104 turns of the system evolution. The figure
shows a comparison for different sizes of the model con-
sidered, ranging from N = M = 50 up to N = M =
400. The range of threshold values for which significant
strength of the dominant commodity is allowed, is similar
for all considered here model sizes at chosen observation
time of R = 104 turns. Again averaging of results at the
end of the observation time is carried out over nr = 100
realizations.

Although the qualitative agreement of these results is
quite satisfactory, a question still remains open as to the
convergence rate with growing values of N = M . Note
that the agreement between the dominant commodity
strengths corresponding to different N = M values in
the case of a longer time of observation is somewhat
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worse than for the case of a shorter observation time
(see Fig. 1). This suggests presence of various regimes
of behaviour over different time scales in our model com-
modity market evolution.

3.2. The dynamics of commodity strengths
In order to investigate further the dynamics of the sys-

tem over different time scales, let us focus on the max-
imum shape variability with growing observation time
of our model economy. We have already discussed in
the previous subsection some indications, that this max-
imum is a signature of a sort of dynamically ordered
phase where a single commodity value is well pronounced.
Hence to support that tentative conclusion, let us con-
sider three different observation times: R = 103, R =
104, and R = 105 turns for the smallest model size shown
in Fig. 2. The results of the comparison are illustrated
in Fig. 3.
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Fig. 3. The dominant commodity strength Vmax(R) af-
ter time ranges of observation of R = 103 turns (cir-
cles), R = 104 (triangles), and R = 105 (squares) aver-
aged over nr = 100 realizations, versus the threshold T .
Data shown in the case when the number of agents is
equal to the number of different types of commodities,
N = M = 50.

From inspection of Fig. 3 it follows that the maxi-
mum shape of the characteristics evolves in time, with
the maximum value being approximately the same over
five orders of magnitude of evolution times. Addition-
ally, it appears that the sensitivity to time range con-
sidered is much greater for T > 3 than it is the case
for T < 3. Indeed, such time variation of the dominant
commodity strenghs is shown in Fig. 4 for a few inter-
esting values of the threshold T . Data corresponding
to a fixed value of T show averaged Vmax as a function
of time. Again nr = 100 realizations have been taken.
Note that within observation time of 105 turns, domi-
nant commodity strengths possible to obtain for thresh-
olds from T = 2.0 up to T = 5.0 already passed their
“prosperity period” (the maximum build over time evo-
lution), whereas model commodity market characterised

by the threshold value of T = 8 (orange line) is on the
rising trend and needs still more time to build at least
a local maximum of the dominant commodity strength.
Such finite periods of prosperity which do not overlap
in time for some ranges of threshold values cause varia-
tion of the maximum shape, seen in Fig. 3. This is yet
another indication of a possible mechanism of the dom-
inant commodity competition over time, whereby some
hierarchy of commodity strengths is formed and remains
for a period of time and then it reorders (e.g. another
commodity takes a dominant role).
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Fig. 4. The dominant commodity strength Vmax versus
time, averaged over nr = 100 realizations. The agent-
based computations are carried out for N = M = 100
The data shown for a few values of the threshold T :
T = 2.0 (black line), T = 3.0 (red line), T = 4.0 (green
line), T = 5.0 (blue line) and T = 8.0 (orange line).

Data shown in Fig. 4 suggest that the higher value of
the threshold, the more time needs the system to man-
ifest ordered phase of a dominant commodity. That ex-
plains to some extent why it is easier to observe for a
given evolution time a better convergence for smaller val-
ues of the threshold parameters (see Fig. 1 and Fig. 2).
This model property could be in some analogy to the so-
called critical slowing down problem due to growing cor-
relations in the system, typical in some Monte Carlo sim-
ulations near the phase transition regime [11, 12]. Note
also increasing role of fluctuations when time evolution
exceeds range of about 104 turns.

3.3. On scaling properties in the agent-based model

We have already argued that for various reasons con-
vergence of the model by taking a limit of just a single
parameter N = M may be a too difficult question to
answer due to the intrinsic dynamics of the dominant
commodity, which depends also on the threshold value
T . It is well known that the finite-size effects may have
some significant influence on results of the simulations.
Such various universal scalings are known analytically for
some exactly-solvable models (e.g. for some variants of
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the Ising model) and could be investigated also numer-
ically [11, 12]. For example, a recent numerical study
shows applications of such scalings and finite-size effects
in the presence of an external Gaussian noise [13], which
modifies the interactions in the system. It illustrates in
that way the influence of the change of interactions on
the critical parameters of the phase-transition in the Ising
model on a square lattice.

Unravelling similar type of scalings in statistically de-
rived observables of presently studied agent-based model
would allow to check the model convergence in proper,
rescaled variables. However, this daunting task requires
extensive numerical simulations of the present model, or
its redefinition so as to be able to tackle it with some
analytical methods allowing to solve it at least approxi-
mately. Nevertheless, in order to check the feasibility of
such approach one could consider some special cases and
conjecture particular scalings.
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Fig. 5. The dominant commodity strength Vmax versus
threshold after R = 104 turns, averaged over nr = 100
realizations. The agent-based computations are per-
formed for a fixed ratio N : M = 4 : 1 of the number
of agents to the number of different types of commodi-
ties. Under conjectured scaling (Vmax(R) with M) and
threshold T (with

√
N) there is approximate collapse of

data, obtained for different combinations of N and M
values: N = 100,M = 25 — circles; N = 200,M = 50
— triangles and N = 400,M = 100 — squares. Error
bars show numerically estimated dispersion of results,
corresponding to a single standard deviation.

Figure 5 illustrates the case of unequal number of
agents N and types of commodities M . The figure al-
lows to envisage to what extent such collapse of data
may be achieved, provided a resonable scaling is conjec-
tured. The considered case corresponds to a fixed ra-
tio of N : M = 4 : 1. The figure shows results for
different relevant cases, namely: N = 100,M = 25;
N = 200,M = 50 and N = 400,M = 100. When
rescaled in such a way that Vmax → Vmax/M and thresh-
old T → T/

√
N , the three different sets of data ap-

proximately collapse to a single universal characteristics.
Error bars denote the standard deviation of the mean
values, averaged over nr = 100 realizations. Note that
rescaled data for N = 200 and N = 400 collapse rea-
sonably well between 0.3 and 0.7 in rescaled threshold
T values. Figure 5 also suggests that the rescaled data
collapse the better the higher number of agents is taken.

3.4. Towards emergence of commodity exchange rates
Finally, let us consider a case where N �M which is a

typical situation for real commodity markets. The exam-
ple shown in Fig. 6 corresponds to the case of N = 104

agents and M = 100 commodities. The figure shows a
temporal variation of a single realization for two arbitrary
chosen commodity types. Their strengths V1, V2, and V3

are taken relative to another commodity strength, that
is they are expressed in terms of strength units of an-
other type of the commodity (not shown). This mimics
to some extent mutual exchange rates in the toy com-
modity market (albeit with more realistic size than it
has been investigated previously). Note the competition
of emerged exchange rates V2 and V3, shown over time of
more than 5000 turns.
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Fig. 6. Commodity exchange rates for N = 104 and
M = 100 (a regime of parameters where N � M).
The commodity strengths V1 (black curve) and V2 (red
curve) and V3 (blue curve) are expressed in terms of
V5 (not shown) for a single realization of the economy
scenario over time range of R = 6700 turns. Note a
competition between such defined commodity exchange
rates, showing itself as a reversal of relative exchange
rates (the second or the third commodity becomes more
valuable in terms of the fifth, base commodity during
the evolution time).

The inset of Fig. 6 shows initial system evolution over
first 1000 turns, to allow for a better inspection of short
time scale behavior and the way such competition of ex-
change rate values sets in. There are periods when each
of these two commodities takes in turn a higher rate ex-
pressed in some other, common (base) commodity units,
possibly after periods of being equivalent to each other.
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4. Summary and conclusions

In this paper we have considered a modification of
microscopic rules, governing the exchange between in-
teracting economic agents on a toy commodity market.
On one hand, allowing value-for-value exchange instead
of one-to-one swap mechanism brings our toy model
closer towards more realistic agent-based economic sys-
tem. Therefore it is of practical importance for real com-
modity market modelling. It has been argued here that
in principle such a modification admits a possibility of ex-
change rate emergence in the system, allowing to express
more directly the link between exchange rates and the
competition of commodities for the dominant status. On
the other hand, the experience gained with the modified
model gives some feeling about sensitivity of that par-
ticular model on details of interactions near the critical
regime of behavior. This might be of some fundamental
interest related to the universality classes of agent-based
models, which could be expressed in terms of scalings
with respect to the finite size of the model.
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