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We address microscopic, agent based, and macroscopic, stochastic, modeling of the financial markets combining
it with the exogenous noise. The interplay between the endogenous dynamics of agents and the exogenous noise
is the primary mechanism responsible for the observed long-range dependence and statistical properties of high
volatility return intervals. By exogenous noise we mean information flow or/and order flow fluctuations. Numerical
results based on the proposed model reveal that the exogenous fluctuations have to be considered as indispensable
part of comprehensive modeling of the financial markets.
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1. Introduction

Statistical physics has been found useful dealing with
the general concepts of complexity and its applications in
finance [1–3]. Financial markets are among the most in-
teresting examples of such complex social systems where
methods of statistical physics face extreme challenges [4].
Although the contemporary understanding of the nature
of microscopic market interactions is limited and ambigu-
ous [5, 6], the advanced methods of empirical data anal-
ysis and agent based modeling are very useful to gain
greater insight into the market’s complexity [7–10].

The long range dependence, considered as slowly de-
caying autocorrelation for absolute returns, is a charac-
teristic property of the empirical financial asset return se-
ries. The debate whether this slow decay corresponds to
long range dependence is still ongoing [11–16]. Econome-
tricians tend to the conclusion that the statistical analy-
ses cannot be expected to provide a definite answer con-
cerning the presence or absence of long-range dependence
in asset price returns [17–19]. A deeper understanding of
microscopic and macroscopic market forces is needed to
build models of the financial markets reproducing the
main stylized facts including the long-range dependence.
Using a general agent-based stochastic model [20] various
statistical properties of the financial markets, including
high volatility return intervals [21–25], have been repro-
duced [26].

Behavioral finance is frequently seen as an alternative
view to the financial market efficiency as it relates the
large price fluctuations to the animal spirits, for exam-
ple, human brain bugs or herding tendencies, see recent
books [27, 28]. Human conformity, from the statistical
point of view is equivalent to the herding, which we con-
sider as statistically dominant in the endogenous dynam-
ics of the financial markets. This endogenous dynamics
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in interaction with the exogenous noise reproduces the
main most general statistical properties of the real mar-
kets [26]. Namely, we follow a basic idea from the statis-
tical physics that the individual intricacies of each trader
are not so statistically important. The traders can be
assumed boundedly rational, as their rationality is just
too heterogeneous to be considered as statistically mean-
ingful for the macroscopic outcome of the financial mar-
ket. Thus we consider the global herding interaction of
agents, quantified by the Kirman transition rates [29] in
one-step Markov chain, as an essential ingredient in the
consentaneous agent based and stochastic modeling [20].
This leads us to the financial market model with burst-
ing endogenous fluctuations, which statistically matches
the empirical data of various markets, various assets and
can produce the large price movements on a longer time
scales than it is allowed by the financial market efficiency
hypothesis [10].

Here we concentrate on the analysis of various noises
included into the proposed modeling in order to reveal
their statistically meaningful impact. Short overview of
the Markov processes with the power-law behavior and
the long-range dependence is given in Sect. 2. In Sect. 3,
we present a short description of the agent based model,
which could be considered as some generalization of the
models proposed by other authors. Description and nu-
merical results, showing how the endogenous and exoge-
nous fluctuations interplay, are presented in Sect. 4. Sec-
tion 5 is devoted to the modeling and analyzes of the
volatility return intervals seeking to reveal the contri-
bution of various noises, and Sect. 6 resumes with the
concluding remarks.

2. Markov processes with power-law behavior
and long range dependence

Historically the fractional Brownian motion has be-
come the prevailing mathematical construction in under-
standing of the self-similarity and the long range depen-
dence observed in the financial markets [30]. Here we ar-
gue once again that the nonlinear stochastic differential
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equations (SDE) can serve as an alternative mechanism
dealing with the property of the long range dependence.
Let us start from the most simple case of SDE exhibiting
one over f noise

dx = (1 + x2)3/4dW. (1)
The signal x defined by the SDE (1) exhibits q-Gaussian
stationary power-law probability density function (PDF)
with the power-law tail P (x) ∼ x−3 and the power spec-
tral density (PSD) S(f) ∼ 1

f , see [31] and the numerical
results given in Fig. 1.
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Fig. 1. Numerically calculated (solid lines) stationary
PDF (left) of the signal |x|, Eq. (1), and PSD (right).
Power-law fit is given as dashed straight lines.

This special case of Markov process with the long range
dependence can be generalized by the class of nonlinear
SDE’s given as [32]:

dx = (η − λ

2
)x2η−1dt+ xη dW, (2)

having just two parameters: η as exponent of noise mul-
tiplicativity and λ as exponent of power-law PDF. It was
justified by various methods that this class of SDE gener-
ates the time series with the power-law behavior of PDF
and PSD [32],

P (x) ∼ x−λ, S(f) ∼ 1

fβ
, β = 1 +

λ− 3

2η − 2
. (3)

The range of frequencies f , where this type of PSD takes
place, is defined by the limits xmin and xmax of x diffu-
sion restriction in Eq. (2), [32],

x2η−2
min � 2πf � x2η−2

max , for η > 1, (4)

x2−2η
max � 2πf � x2−2η

min , for η < 1. (5)
Note that the class of Markov processes Eq. (2) is not
a long-range dependent in strict definition as frequencies
are limited from the side of low values and time lags of
autocorrelation from the side of high values. Neverthe-
less, having in mind that in real processes such limits are
always natural it is rational to assume that this class of
SDE’s can be considered as possible description of the
so-called long-range dependence in the financial markets.

The class of stochastic processes, Eq. (2) has much
more power-law properties. First of all we are interested
in bursting behavior of the signal, having direct relation
to the risk assessment in the financial markets. Let us
define a burst as a part of signal, x(t), lying above the
fixed threshold, hx, see Fig. 2 as a graphical illustration.
The time interval, τ = τ2− τ1, here serves as a definition
of the burst duration and the burst return interval can
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Fig. 2. An example of signal x(t), generated by Eq. (2).

be defined as T = τ3 − τ1. One can consider inter-burst
time as θ = τ3 − τ2.

It is possible to use the first hitting (passage) time
framework [33–36] to derive PDF of burst duration, τ ,
see [37]. The asymptotic behavior of τ PDF can be writ-
ten in rather transparent form

p
(ν)
hx

(τ) ∼ τ−3/2,

when 0 < τ � 2

(η − 1)2h
2(η−1)
x j2ν,1

, (6)

p
(ν)
hx

(τ) ∼ 1

τ
exp

(
−
(η − 1)2h

2(η−1)
x j2ν,1τ

2

)
,

when τ � 2

(η − 1)2h
2(η−1)
x j2ν,1

. (7)

Here, ν = λ−2ν+1
2(η−1) , and jν,1 is a first zero of a Bessel func-

tion of the first kind. The power-law behavior with expo-
nent 3/2 in Eq. (7) is consistent with the general theory of
the first-passage times in one-dimensional stochastic pro-
cesses [34, 36]. It is possible to show by the numerical
calculations that exponent 3/2 is retained in the PDFs
of burst return interval, T , and of inter-burst time, θ,
see [38, 39]. We will use these power-law properties of
the signal, generated by Eq. (2), to argue the use of the
nonlinear SDE in the modeling of the financial markets.

3. Generalized agent based herding model of the
financial markets

We aim to construct a realistic model of the finan-
cial market based on the power-law properties of non-
linear SDE, bridging it with microscopic behavior of the
financial agents. One has to recognize that this task is
naturally very ambitious and there are many other at-
tempts to build the agent based models of the financial
markets [40–48]. The variety of the already proposed
agent based models confirms the ambiguity of such an
approach. From our point of view the analytical treat-
ment of the agent based models and detailed comparison
of results with the empirical data should be employed
making the selection between various alternatives. Thus
we start from the most simple version of agent interac-
tions and add some new features when better adjustment
to the empirical data is needed.
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As a first step we selected the Kirman herding interac-
tions of two widely accepted groups of agents: chartists
(speculative traders) and fundamentalists. Fundamen-
talists buy stocks when market price is lower than fun-
damental value and sell when market price is higher.
Chartists are high frequency speculative traders mak-
ing heterogeneous decisions regarding the further market
price movement. It was shown that such agent system
is able to catch up the long range dependence of volatil-
ity [40]. The consideration of the same agent system was
proposed in [49], which we adopted in a more appropriate
form for our purposes and derived macroscopic (stochas-
tic) equation for the ratio of chartists and fundamental-
ists x, see [50]. The main innovation was to introduce
the variable trading activity of the agent system as some
feedback from macroscopic state. This increases the ex-
ponent of multiplicativity η in macroscopic SDE for the
ratio x. The SDE for x in the region of high values can be
approximated by the class of SDE (2) with parameters

η = (3 + α)/2, (8)
λ = ε2 + α+ 1. (9)

Here α is a feedback parameter and ε2 is idiosyncratic
transition rate of chartists to fundamental behavior di-
vided by herding parameter h, see [50] for details. As in
this simplified model x has a meaning of the long-term
absolute return, its power law behavior is informative
about validity of such approach. Note that exponent of
PSD, β, can be written as

β = 1 + (ε2 + α− 2)/(1 + α). (10)
Having in mind that the exponent of empirical absolute
return power-law PDF is approximately 4, the corre-
sponding parameter in Eq. (2) has to be λ ' 4. The
empirical analyses suggest that the trading activity is
proportional to the square of the absolute returns, this
implies α = 2 and from Eq. (9) the value of ε2 ' 1
follows. This from Eq. (10) implies a value of β in the
region 1 . β . 1.5, which complies with the long-range
dependence, but is too high in comparison with empiri-
cal value below 1. It was shown in [50] that this model is
compatible with multifractal behavior of absolute return
but it is not possible to reproduce empirical PDF and
PSD of absolute return with the same set of parameters.

There is one more problem making comparison with
the empirical long-range dependence of absolute return
related with two scales of long-range dependence, as em-
pirical PSD has at least two values of β, β1 w 0.7 and
β2 w 0.3. To solve this problem we have to introduce one
more source of the return fluctuations acting in shorter
time scales than chartist fundamentalist herding dynam-
ics. Thus we modify this herding model by dividing
chartists into two groups: optimists and pessimists.

Now we have slightly more sophisticated herding model
with three groups of agents: fundamental (f), optimistic
(o) and pessimistic (p), where relative population of each
group, ni, varies under constraints

∑
i ni = 1. As usu-

ally [44, 49, 51–53], the fundamental traders assume
that the price should be based on the market fundamen-

tals quantified by some value Pf . The previous chartist
(c) trading strategy now consists of optimistic and pes-
simistic trading, where optimists always buy and pes-
simists always sell. Let us define the excess demands,
Di, for both fundamental and chartist strategies, as was
proposed in [49]:

Df = nf (lnPf − lnP (t)) ,

Dc = r0(no − np) = r0ncξ, (11)
where P (t) is the current market price of asset, r0 de-
scribes relative impact of chartists and ξ = no−np

nc
is their

average mood. The balance of demands Df and Dc de-
fines the log-price [20, 49]:

p(t) = ln
P (t)

Pf
= r0

nc
nf
ξ = r0

1− nf
nf

ξ. (12)

As the empirical PSD of the absolute returns demon-
strates, it is rational to assume optimists and pessimists
as being high frequency traders, trading between them-
selves on the intraday time scales H times more fre-
quently than trading with fundamentalists. This allows
us to simplify the agent population ni, dynamics arising
from one step transition i → j rates proposed by Kir-
man [29]:

µij = σij + hnjN, (13)
where σij describes idiosyncratic switching tendency,
while h term quantifies influence of peers, njN . Note
that number of peers in the global pairwise coupling of
agents is proportional to the total number of agents N .

The following symmetric relationships (σop = σpo =
σcc, hop = Hhfc = Hh), (σpf = σof = σcf ), (σfp =
σfo = σfc/2 and hfp = hfo = h) based on general
understanding of the financial market dynamics greatly
simplify the model. The assumption that fundamental-
ists are the long-term traders whereas the chartists are
the short-term traders means that (H � 1, σcc � σcf
and σcc � σfc). Under these assumptions the dynam-
ics are well approximated by two almost independent
SDEs [20, 54], resembling the original SDE from the two
state herding model [29, 49]:

dnf =
(1− nf )εcf − nfεfc

τ(nf )
dt

+

√
2nf (1− nf )

τ(nf )
dWf , (14)

dξ = −2Hεccξ

τ(nf )
dt+

√
2H(1− ξ2)
τ(nf )

dWξ. (15)

Here τ(nf ), as the above mentioned macroscopic feed-
back, is the inter-event time, whereas Wf and Wξ are
independent Wiener processes. Note that in the above
equations we scale model parameters, εcf = σcf/h,
εfc = σfc/h and εcc = σcc/(Hh), as well as time ts = ht,
omitting subscript s in the equations.

Inter-event time τ(nf ) takes the following form:
1

τ(nf )
=

(
1 + aτ

∣∣∣∣1− nfnf

∣∣∣∣)α . (16)



1026 V. Gontis

This form is inspired by the empirical analysis [55–58],
where the trading activity is proportional to the square
of absolute return (thus α = 2). Note that the given
form depends on the long-term component of return in
the proposed model, x =

1−nf

nf
.

Equations (14)–(16) form the complete set for macro-
scopic description of the endogenous agent dynamics and
together with Eq. (12) can be considered as a model of
the financial markets. Equation (14) written for the new
variable x =

1−nf

nf
in the region of high values of variable

belongs to the class of the non-linear SDEs, reproduc-
ing power-law statistics: PDF and PSD [59, 60]. It was
shown in [54] that such a three state herding model is able
to reproduce the long-range dependence of absolute re-
turn with two exponents of PSD. Nevertheless, the values
of these exponents are too high and there is no oppor-
tunity to adjust the endogenous model of the financial
markets to the empirical data. We have to conclude that
something very essential is missing in this modeling.

4. Interplay between endogenous and exogenous
fluctuations

In the previous modeling of the financial markets by
the nonlinear SDE [61–64] it was shown that the addi-
tional stochastic process driven by the class of SDE’s can
solve the problem of too high exponents in PSD. Thus we
consider the opportunity to introduce one more source of
the return fluctuations related with the exogenous infor-
mation or order flow noise. In other words, we do doubt
in modeling of the financial markets based just on the en-
dogenous dynamics of agents, thus combine it with some
phenomenological description of high frequency exoge-
nous noise.

It is widely accepted to describe the dynamics of asset
price S(t) in the financial markets by standard model [34]
written as geometric Brownian motion

dSt = St(µtdt+ σtdW ), (17)
where µt stands for the slowly varying trend, σt for the
slowly varying volatility and W for the Brownian motion
(the Wiener process). The physical interpretation of the
Wiener process in Eq. (17) was recently considered as a
motion of the financial Brownian particle colliding with
the flow of limit orders in the real financial market [65].
This is one more argument for us to interpret W as a
source of high frequency exogenous noise incorporating
fluctuations of information flow through the order flow.
It is natural to assume that σt reflects much slower vary-
ing endogenous state of agent system we discussed in the
previous section. The long-range trend in Eq. (17) is de-
scribed by slowly varying µt, which could be considered
as reflecting slow movement of the fundamental price or
persistent trend of the exogenous noise. Seeking to sim-
plify our task it is rational to restrict the study with
modeling of return leaving out the long-term movement
of price S, which is too much related to the exogenous
information quantified by µ(t) − 1

2σ
2
t . Thus we define

from Eq. (17) the short term return rδ(t) in a very short

time period δ, where σt can be assumed as constant,
rδ(t) = σtωt. (18)

Here ωt is a Gaussian noise with zero mean and unit
variance. Note that Eq. (18) coincides with return def-
inition in the family of autoregressive conditional het-
eroskedasticity (ARCH) models. The volatility σt is as-
sumed in [20] as a linear function of the absolute endoge-
nous log price |p(t)| defined in Eq. (12):

σt = b0(1 + a0|p(t)|), (19)
here b0 serves as a normalization parameter, when we
normalize model and empirical series in the same way,
b0 = 1; a0 determines the impact of endogenous dynam-
ics on the observed time series. The model, defined by
Eqs. (18) and (19), comprises both the endogenous dy-
namic part described by σt and the exogenous noise part
described by ωt.

Substitution of endogenous price p(t), Eq. (12), cal-
culated by Eqs. (14)–(16) for nf and ξ, into Eqs. (18),
(19) completes the model including the endogenous and
exogenous fluctuations. It is possible to demonstrate [66]
that such model resembles the versions of non-linear
GARCH(1,1) models [67, 68]. At the same time the
proposed model is based on the multifractal point pro-
cess [61, 62] and should be considered as an alternative
to the modeling by the Hawkes self-excited point process
model [69].

Phenomenological and pure stochastic models do not
have sufficient insight into market dynamics. The ad-
vantage of the agent-based models is their insight into
real life and real human behavior, which can be quanti-
fied by parameters. Such models can be modified, first,
introducing the relationships between exogenous and en-
dogenous fluctuations and, second, adjusting their time
scales.

The selected time window δ is limited by the require-
ment that the change of σt has to be inconsiderable. Nev-
ertheless, one can calculate the return in longer time win-
dow∆ by summing up the consecutive short-term returns
rδ(t):

r∆(t) =

∆/δ∑
i=1

rδ(t+ iδ). (20)

Thus the resultant series of return r∆(t) already incor-
porate endogenous and exogenous fluctuations of the fi-
nancial markets.

The interplay of endogenous and exogenous fluctua-
tions might be influenced by the intro-day fluctuations
observed in real markets. To account for the daily pat-
tern a time dependence was introduced [20] into param-
eter b0, i.e.,

b0(t) = b0 exp(−({t mod 1} − 0.5)2/w2) + 0.5, (21)
where w quantifies the width of intra-day fluctuations.
Though the model has been designed to reproduce the
long-range dependence and power-law behavior of abso-
lute return, from our point of view, it suites very well
to investigate the interplay of endogenous and exogenous
noise reflected in the empirical data of absolute return
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PDF, PSD and return intervals [21–23].
In Ref. [26] we already adjusted parameters of given

model to the empirical data of NYSE and FOREX.
Good agreement was achieved for the set of parameters:
δ = 1/390 trading day = 3.69 min which is equivalent to
1 NYSE trading minute, εcf = 1.1 and εfc = 3, εcc = 3,
H = 1000 adjusts the PSDs of the empirical and model
time series, a0 = 1 and aτ = 0.7 are the empirical pa-
rameters defining the sensitivity of market returns and
trading activity to the populations of agent states, α = 2
is selected on the basis of empirical analysis [55–58], and
h = 0.3×10−8 s−1 is the main time-scale parameter that
adjusts the model to fit the real time-scale.

Fig. 3. Numerical results exhibiting different compo-
nents of the proposed model of one minute (∆ = δ =
1/390 trading day) return. (a) Stationary PDF of abso-
lute return: just of nc/nf = (1 − nf )/nf in time steps
δ (solid gray line); of | rδ(t) |, with constant ξ ≡ 1 and
b0 ≡ 1 (thin gray line); and with constant b0 ≡ 1 only
(dashed black line); (b) PSD for the same variables as
in (a). All other model parameters are the same in this
contribution.

It was shown in [26] that the proposed model of the
financial markets with the same set of parameters repro-
duces PDF and PSD of absolute return and statistics
of volatility return intervals for all assets analyzed from
the NYSE and FOREX markets with return definition
times ∆ ranging from one minute to one month. Here we
demonstrate how these statistical properties depend on
the constituent noises of proposed model. First, the long-
term chartist fundamentalist dynamics is described by
ratio nc/nf = (1− nf )/nf defined by Eq. (14). Second,
keeping ξ and b0 constants we investigate the interaction
of the long-term endogenous dynamics with exogenous
noise by analyzing | rδ(t) | and | r∆(t) |. Third, we ana-
lyze the absolute return series, when optimist-pessimists
dynamics ξ(t) is switched on as well.

In Fig. 3 we demonstrate PDF (a) and PSD (b) of
these three time series, when ∆ = δ = 1/390 of trad-
ing day. One can observe that the power-law behavior
of these first and second order statistics first of all is de-
fined by nc/nf dynamics represented by solid gray lines
in Fig. 3. When we add the exogenous noise (thin gray
line), it slightly transforms PDF, making it smoother,
and transforms PSD in high frequency area making it flat
as white noise. When we add the high frequency fluctu-
ations of ξ (dashed black line), they are not reflected in
PDF, which practically coincides with the previous case,
but impact PSD, which demonstrates smooth transition
from low frequencies to high frequencies.

Fig. 4. Numerical results exhibiting different compo-
nents of the proposed model of daily return with b0 ≡ 1.
(a) Example of nc/nf = (1− nf )/nf time series (black
line) in comparison with return r∆(t) (gray line) calcu-
lated keeping ξ constant; (b) example of nc/nfξ(t) time
series (black line) in comparison with return r∆(t) (gray
line) calculated with chartist’s mood ξ; (c) stationary
PDF of absolute return: just of nc/nf = (1 − nf )/nf
(solid black line), of | r∆(t) |, with constant ξ ≡ 1 (thin
line), and | r∆(t) | with constant b0 ≡ 1 only (dashed
black line); (d) PSD for the same variables as in (c),
nc/nf upper, with ξ lower. All other model parameters
are the same in this contribution.

In Fig. 4 we demonstrate behavior of the same model
components as in Fig. 3, but with daily definition of
return, ∆ = 1 day. Extracts of return time series are
given in sub-figures (a) and (b), where modulating sig-
nals (black lines) are compared with returns accounting
exogenous noise (gray lines): in sub-figure (a) ξ ≡ 1
and in sub-figure (b) dynamics of chartists is included.
Stationary PDFs of return are given in sub-figure (c),
where solid black line illustrates nc/nf , thin gray line
adds exogenous noise and dashed line includes ξ fluc-
tuations as well. Note that high frequency endogenous
fluctuations are able to decrease the exponent of power-
law PDF, when time scale ∆ exceeds characteristic time
of these fluctuations. We plot PSD of absolute returns
in sub-figure (d), which demonstrates strong dependence
of power-law exponents on both high frequency and ex-
ogenous fluctuations. The same scaling of empirical and
model PSD of returns with ∆, see [26], confirms that it
is essential to account high frequency endogenous and
exogenous fluctuations in the modeling of the financial
markets as these fluctuations contribute to the long-term
statistical properties (PSD for low frequencies).

5. Statistical properties of volatility return
intervals

There is continuing extensive study of high volatility
return intervals in the financial markets [21–26, 70]. Let
us discuss the statistical properties of return intervals
from the perspective of the proposed model and var-
ious noises incorporated there. The power-law nature
of Eqs. (2) and (14) including burst duration power-law
PDF with exponent 3/2, from our point of view, is a key
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for understanding statistics of volatility return intervals.
As in previous section we analyze the decomposition of
noises incorporated into the proposed model seeking to
reveal their input into the PDF of return intervals Tq.
Recall definition of absolute return interval Tq, given in
Fig. 5. Seeking to reveal scaling properties of Tq PDF,
we normalize series of Tq by its average 〈Tq〉.

We investigate the discrete series of absolute return
| r∆(t) | calculated for four different compositions of the
model: (a) r∆(t) = nc/nf , Eq. (14); (b) r∆(t) defined by
Eqs. (20) and (18), σt = 1 + a0|nc/nf |; (c) the same as
previous with σt = 1 + a0|nc/nfξt| including ξ fluctua-
tions; (d) the same as previous including seasonality b0
defined in Eq. (21) and σt = b0(1 + a0|nc/nfξt|).

Fig. 5. The definition of return intervals Tq. Return
intervals Tq between the volatilities of the price changes
that are above a certain threshold q, measured in units
of standard deviations of returns. Here two values of
threshold q = 2 and q = 4 are shown in the time series
of absolute return.

In Fig. 6 we plot 4 sub-figures of scaled Tq PDFs for
4 mentioned compositions of the model return and for
∆ = δ = 1/390 trading day. In each sub-figure PDFs for
7 values of threshold q = {1.5, 2, 2.5, 3, 5, 10, 15} are given
by corresponding Greek letters {α, β, γ, δ, θ, π, τ}. As one
could expect, in the case (a) the sequence of returns is
driven by one-dimensional stochastic process, which, ac-
cording to first hitting time theory [33–36], results in 3/2
power-law of return interval PDF for all values of thresh-
old q. Note that time step∆ = δ = 1/390 for these return
series is very small in comparison with 1/h, therefore dis-
creteness of the signal is not important. In sub-figure (b)
the signal includes exogenous noise, which is responsi-
ble for the appearance of some exponential like cut-off in
PDF of return intervals. This effect is stronger for low
thresholds q and practically disappears for high values of
q. When we add high frequency endogenous fluctuations
ξ, (c) sub-figure, PDF of Tq do not change considerably,
as δ � 1

hH . PDFs of Tq do not experience considerable
change even by dynamic seasonality, Eq. (21), included
in sub-figure (d). Therefore we conclude that interplay
of exogenous noise with endogenous dynamics is a key
factor resulting in observed power-law behavior cutoff of
Tq PDF.

Fig. 6. Scaled PDF of volatility return intervals Tq for
∆ = δ = 1/390 trading day and normalized return
thresholds q = {1.5, 2, 2.5, 3, 5, 10, 15}, where points
of numerical histograms are denoted by Greek letters
{α, β, γ, δ, θ, π, τ} for corresponding values of q. Dis-
tributions are plotted in log-log scale when Tq values
are normalized by series average 〈Tq〉. (a) PDFs just
of nc/nf = (1 − nf )/nf calculated with time step
∆; (b) PDFs of r∆(t) defined by Eqs. (20) and (18),
σt = 1 + a0|nc/nf |; (c) the same as previous PDFs
with σt = 1 + a0|nc/nfξt| including ξ fluctuations; (d)
the same as previous PDFs including seasonality b0 de-
fined in Eq. (21) and σt = b0(1 + a0|nc/nfξt|). All
other model parameters are the same in this contribu-
tion. The straight line guides the eye according to 3/2
power-law.

In Fig. 7 we plot 4 sub-figures of scaled Tq PDFs
for the same 4 compositions of the model return with
∆ = 390δ = trading day. Values of thresholds and corre-
sponding notations of PDFs are the same as in previous
figure. In this case daily steps of continuous stochastic
process nc/nf result in discreteness of return series and
even for simplest case, (a) without exogenous noise, devi-
ations of Tq PDFs from 3/2 power-law appears for all val-
ues of threshold q in the region of high Tq values and for
the highest thresholds in the region of low Tq values. Nev-
ertheless, for moderate threshold values some region of Tq
power-law 3/2 behavior is still present. In sub-figure (b),
where the signal includes exogenous noise, the deviations
from 3/2 power-law become more apparent and all PDFs
scale nearly in the same functional form. When we add
high frequency endogenous fluctuations ξ, (c) sub-figure,
PDFs of Tq deviate from 3/2 power-law more consider-
ably for high and low threshold values. For the q = 5, θ
points of Tq PDF have clear part of 3/2 power-law. This
confirms the contribution of endogenous agent dynamics
to the behavior of returns with daily definition, though
the exogenous noise input seems more considerable in
this case. Dynamic seasonality included in sub-figure (d)
does not change PDFs of Tq considerably. Our numerical
results based on the proposed model confirm the increas-
ing impact of exogenous noise on statistics of volatility
return intervals, when time window of return definition,
∆, is wider.
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Fig. 7. Scaled PDF of volatility return intervals Tq
for ∆ = 390δ = trading day and normalized return
thresholds q = {1.5, 2, 2.5, 3, 5, 10, 15}, where points
of numerical histograms are denoted by Greek letters
{α, β, γ, δ, θ, π, τ} for corresponding values of q. Dis-
tributions are plotted in log–log scale when Tq values
are normalized by series average 〈Tq〉. (a) PDFs just
of nc/nf = (1 − nf )/nf calculated by Eq. (14) with
time step ∆; (b) PDFs of r∆(t) defined by Eqs. (20)
and (18), σt = 1 + a0|nc/nf |; (c) the same as previous
PDFs with σt = 1+a0|nc/nfξt| including ξ fluctuations;
(d) the same as previous PDFs including seasonality b0
defined in Eq. (21) and σt = b0(1 + a0|nc/nfξt|). All
other model parameters are the same in this contribu-
tion. The straight line guides the eye according to 3/2
power-law.

The detailed comparison of statistical properties for re-
turn intervals generated by this model and empirical data
for NYSE stocks and FOREX exchange rates is given
in [26]. In Fig. 8 we provide only illustrative compari-
son of full scale model PDFs for daily volatility return
intervals with PDFs calculated for absolute daily returns
of 6 NYSE stocks. Series of return for 6 stocks obtained
from Yahoo Finance have been normalized by standard
deviation to the same PDF and have been joined to pro-
duce a single data set for absolute return intervals. Fig-
ure 8 plots comparison for 4 different threshold q values
given in sub-figures. Empirical and model PDFs coin-
cide pretty well, only some difference can be observed
for q = 2.5. The model does not reproduce empirical
statistical properties of return intervals for low values
of thresholds outside the power-law part of return PDF,
where the complexity of behavior is very high. Proba-
bly there is a space for the model improvement taking
into account the intraday fluctuations of trading activity
more carefully.

6. Concluding remarks

Herein, we analyzed how various noises impact statis-
tical properties of absolute return in the financial mar-
kets. Earlier proposed model includes the long-term and
high frequency endogenous fluctuations as well as the
phenomenological exogenous high frequency fluctuations.
This helps us to reveal numerically how these noises inter-

Fig. 8. Comparison of scaled model and empirical
PDFs of volatility return intervals Tq for ∆ = trading
day. Points of numerical model histograms are denoted
by Greek letters and empirical PDFs for 6 NYSE stocks
calculated from normalized return series are plotted by
solid lines. Values of q are given in the right corner
of sub-figure. Distributions are plotted in log–log scale
when Tq values are normalized by series average 〈Tq〉.
All other model parameters are the same in this contri-
bution.

play contributing to various statistical properties includ-
ing absolute return PDF, PSD and PDF of high volatility
return intervals.

First of all, we demonstrate that exogenous noise is es-
sential in the modeling of long-range dependence of abso-
lute return and volatility as endogenous dynamics alone
produces too high values for the exponents of PSD.

Second, we demonstrate that exogenous noise is very
important for the understanding exponential like cut-off
of high volatility return interval PDF, arising from the
general hitting time theory of stochastic processes.

Finally, our results confirm that the impact of ex-
ogenous noise increases with wider window ∆ of return
definition resulting in considerable deviations from 3/2
power-law form of return interval Tq PDF.

These results confirm that the comprehensive modeling
of financial markets has to incorporate endogenous dy-
namics of agents as well as exogenous information or/and
order flow noise.
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