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The proposed article presents a new approach to analyze the relationships between financial instruments. We
use blind signal separation methods to decompose time series into the core components. The components common
to the various instruments provide broad set of characteristics to describe the internal morphology of the time
series. In this research a modified and extended version of AMUSE algorithm is used. The concept is presented
based on real financial instruments.
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1. Introduction

The statistical assessment of financial instruments and
the relationship between them is one of the fundamental
problems in the theory and practice of financial markets
and arise in such areas like the Markowitz portfolio the-
ory, or CAPM and ATP models [1, 2]. It is also a key
component of investment systems, especially for those
based on automatic algorithmic strategies. However, in
the multidimensional case, the assessment of interdepen-
dences between the different signals based on standard
correlation analysis is relatively ambiguous and often dif-
ficult due to such factors like the outliers, the noises, the
delays or miscellaneous random fluctuations.

We propose a new approach in which comparison of
mutual dependence is based on the hidden components.
They can be determined as a result of times series mor-
phological analysis which is crucial to reveal the inter-
nal structure of the time series. The hidden components
are obtained from blind signal separation methods [3–
5] where we use a novel version of the AMUSE algo-
rithm [5, 6]. Since the standard version of this algorithm
is based on time delay second-order statistics and it is
very sensitive to additive noise, we propose to use fil-
tered nonlinear covariance matrices in order to increase
its effectiveness. Additionally, we propose to explore flex-
ible Perks model distributions [7, 8] as basis for nonlinear
function used in our separation algorithm, which enables
to explore higher-order statistical dependences.

2. Blind signal separation and AMUSE
algorithm

The idea of blind signal separation (BSS) is to recon-
struct source signals mixed in a some system. Both, the
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system and the source signals are unknown and the iden-
tification is only based on mixed data [3, 4]. The solution
to this particular problem requires a number of assump-
tions, including the generating model. The most common
one is a linear model

x(t) = As(t) (1)
as well as the model with additive noise

x(t) = As(t) + v(t), (2)
where A ∈ Rm×n is full column rank mixing matrix,
x = [x1, x2, . . . , xm]T is the vector of observed mixed
signals, and s = [s1, s2, . . . , sm]T is the vector of source
signals. The difference between the model (1) and (2) is
crucial because additive noises are still a challenging task
for BSS methods. Beyond the models (1)–(2) there are
other families of models including non-linear mixing, dy-
namic mixing, and non-linear dynamic mixing. However,
in most cases, the starting point is the model of the first
form (1) where the solution is determined by a separating
matrix W which can be fitted into the following formula:

y = Wx = WAs = PDs, (3)
where P is permutation matrix which determines the or-
der of the estimated signals, D is diagonal scaling matrix,
W = A+ is pseudo-inverse matrix to A [3, 4]. From
(3) we see that the estimated source signals y can be
rescaled and reordered, as versions of signals s, but in
our case it is not significant, so we can assume y ≈ s.
The particular solution of the BSS problem is related to
signals and mixing system characteristics. The most pop-
ular approaches are: independent component analysis
(ICA), sparse component analysis (SCA), smooth com-
ponent analysis (SMCA) or separation methods based on
second-order statistics, like SOBI and AMUSE [3, 4, 9].

In further considerations we focus on AMUSE algo-
rithm, which is addressed for signals with time structure
like financial time series. For model (1) this algorithm
is simple and there is no need to set arbitrary parame-
ters. Unfortunately, in case of even small level of addi-
tive noise the quality of separation declines drastically.
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To overcome the above problems we propose include to
AMUSE ideas underlying to the ICA algorithms, where
exploration of the higher order statistics gives additional
information for separation process. It means the usage
of non-linearities functions with optimal form as (1):

f(y) = −∂ log(p(y))
∂y

, (4)

where p(y) is probability density function of y, which is in
general not known a priori and we need to adopt certain
assumed probability model.

To combine time structure exploration which is un-
derlying idea of the AMUSE algorithm with higher or-
der statistics exploration via ICA algorithms we define
the non-linear filtered correlation matrix in the following
form:

RF = λE(y(t)(
∑
k∈K

aky(t− k))T

+βE(f(y(t))(
∑
j∈J

ajy(t− j))T ), (5)

where λ, β are parameters defining the ratio between the
correlation matrix and non-linear correlation matrix, and
K and J are sets of delay values for the ordinary correla-
tion matrix and non-linear correlation matrix. In order
to choose the nonlinearity we propose a new approach
based on Perks family distributions [7, 8]:

p(y) =
a0 + a1 e

−y + a2 e
−2y + . . .+ am e−my

b0 + b1 e−y + b2 e−2y + . . .+ bn e−ny
, (6)

where the parameters are selected to meet the conditions
of the probability density function. For example setting
m = 1, a = 0, a1 = 1 and n = 2, b0 = 1, b1 = 0, b2 = 1,
reduces p(y) to hyperbolic secant distribution. The non-
linearity (4) for distribution (6) in the general case has
the form

f(y) =
b1 e
−y + . . . +bn e−ny

b0 + b1 e−y + . . .+ bn e−ny
− a1 e

−y + . . .+ am e−my

a0 + a1 e−y + . . .+ am e−my
.(7)

As a result, our version of separation algorithm called
extended AMUSE (EAMUSE) has the following form:
(1) Let z(t) = x(t), p = 0,W = I.
(2) Estimate the generalized time delay correlation ma-
trix RF defined by (5).
(3) Perform the symmetrization process

Rzz(p) =
1

2
[RF +RT

F ]. (8)

(4) Find matrix orthogonal to matrix Qp (eg. from SVD)
which diagonalizes the Rzz.
(5) Perform decorrelation for given delay

y(t) = Qpz(t). (9)
(6) Let W ← QpW , z(t) ← y(t), p ← p + 1 and go to
step 2 until chosen stop criterion is fulfilled.
(7) The separation matrix is W .

3. Financial data separation — time series
morphology

Due to the multidimensional nature of BSS we gain
direct insight into the structure of dependences existing

in financial data. The relationship analysis performed
on certain set of internal components will be referred as
morphological analysis. To simplify the assessment of
the extracted components, they are standardized into a
unitary variance and the corresponding standardization
coefficients will be included in the modified mixing ma-
trix

A = W−1V , (10)
where matrix V is diagonal matrix with elements vii =

1
var(yi)

. For the extracted source signals and for the mix-
ing matrix we define several morphological characteris-
tics which enable the synthetic analysis of the internal
structure of financial instruments and the relationships
existing between them. First, we define the concept of
BSS correlation defined as:

Gcov(x1, x2) =

min(|a11|, |a12|) + min(|a21|, |a22|)
max(|a11|, |a12|) + max(|a21|, |a22|)

, (11)

where aij are the elements of the separating matrix A,
which are the results of separating the signals x1 , x2.
The interpretation of this relationship is as follows. With
two observed signals and having, as result of the decom-
position (separation), two source signals we can analyze
the direct impact of individual components on the ob-
served signals. The dominant component in the observed
signal will be called characteristic or dominant one. Non-
dominant component will be called external one. As the
correlation strength we take the ratio of the dominant
components to the external components. A value of 1
is achieved if the proportion of the source signal in the
observed signals is equal. Signals are fully independent if
each of them is associated with only one hidden compo-
nent. In the case of ICA method and its properties, it is
in fact the actual independence (not only uncorrelated).

In general, for x1, x2, . . . , xn signals we can define cor-
relation matrix in the form GCOV = Gcov(xk, xl)kl, in
which the particular elements are calculated in the fol-
lowing way:

Gcov(xk, xl) =

∑2
i=1 min

[
|a(k,l)i1 |, |a

(k,l)
i2 |

]
∑2

i=1 max
[
|a(k,l)i1 |, |a

(k,l)
i2 |

] , (12)

where a
(k,l)
i1 are the elements of separating matrix A

which are the results of separating the pair of the signals
x1, x2. This means that each pair of signals is separated
individually with the same algorithm.

Another characteristic which needs to be defined is the
morphological similarity determined in the system that
consists of n selected signals. The similarity is also de-
fined for the pairs of signals, but it assumes a uniform and
simultaneous separation of all signals where common sep-
aration matrix is analyzed. Therefore, the common mor-
phological similarity (morphological variance/covariance
— mc) is defined as:
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Mij =

n∑
k=1

|aik||ajk|. (13)

The last characteristic will refer to the individual finan-
cial instrument and will be expressed in terms of sepa-
rated signals. For this reason we will use the measure
of morphological diversification (morphological entropy),
expressed as

Hm = −
n∑

i=1

(
ai∑n
1 ai

log
ai∑n
1 ai

)
. (14)

4. Practical applications

In this section we present an example of time se-
ries morphology analysis based on the above con-
cept. The following stocks and indices from War-
saw Stock Exchange are selected for the analysis:
Mostostal Zabrze (MSZ), Mostostal Warszawa (MSW),
BZWBK (BZW), Kety (KTY), Budimex (BDX), WIG20,
mWIG40, sWIG80. Firstly, we are interested if the mor-
phological characteristics are stable over the time and
whether they have an interesting economic interpreta-
tion, which is presented for the two companies. In
case of BDX and BZW we observed quite stable behav-
ior: the GC coefficient for 2002.06.26–2007.03.30 period
was 0.093, while for 2007.03.30–2008.06.17 it was 0.106.
The separating matrix for the first period (2002.06.26–
2007.03.30) was

A =

[
0.84 0.16

0.01 0.99

]
and for the second period (2007.03.30–2008.06.17) it was

A =

[
3.19 − 0.25

0.34 − 2.50

]
.

Figure 1 shows the percentage of absolute values of the in-
dividual components. The dominant component in BDX
is y1 and for BZW it is y2. We can observe that for the
long-term bull market (the first period) and the declines
(the second period) these relationships are relatively sta-
ble. It can be also noted that in the first period the influ-
ence of the dominant BZW component on BDX is greater
than the dominant BDX component on BZW. This seems
consistent with the market experience and the theory be-
cause BZW is included in the leading WIG20 index and
its share is approximately 5 percent. The similar im-
pact can be observed on the morphological analysis. At
the same time we can observe that the impact of BDX
(the dominant component) on BZWBK is not important,
which can be consistent with intuition and market prac-
tice.

The second study was aimed to compare the signals
generated by the GC coefficient with the signals gener-
ated by a standard correlation coefficient (corrcoef). This
was done for two indices: WIG20 and mWIG40, taking
into account the closings of 3500 sessions. The values of
GC coefficient were compared with the standard corre-

Fig. 1. The visualization of absolute values in A matri-
ces for Budimex (BDX) and BZWBK (BZW): (top) in
2002.06.26–2007.03.30 period; (bottom) in 2007.03.30–
2008.06.17 period.

lation coefficient. The calculations were prepared on the
rolling windows with 400 and 600 observations each.

Based on Fig. 2, in both cases, with increasing num-
ber of observations the smoothing of the characteristics
is observed. However, in case of Gcov coefficient a signif-
icant increase in the volatility is clearly visible for market
disaster in 2007 and 2008 (the observations between 1500
and 2000). Similarly, in the 2011 with the markets col-
lapsed due to the crisis in Greece, the characteristics of
the Gcov shows the fluctuations (around the observation
no. 2500). For the correlation coefficient we do not see
those market events so clearly. Therefore, the Gcov char-
acteristics can act as an indicator of significant and/or
long term changes in the market.

The third study was performed for the common mor-
phological similarity assessment for all chosen instru-
ments. Figure 3 shows a visualization of the absolute
values of the A common matrices normalized to the range
(0,1) in the following periods: (a) 2002.06.26–2007.03.30,
(b) 2007.03.30–2008.06.17. We can see that each instru-
ment can be associated with the dominant components
which can be associated with main trend of each instru-
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Fig. 2. Gcov and corrcoef over the time, where: a) GC
with 600 observations window, b) corrcoef with 600 ob-
servations window, c) GC with 600 observations win-
dow, d) corrcoef with 400 observations window.

ment. For instance, for WIG20 it is y7 component for
the first period and y4 for the second period. The com-
ponents other than the dominant can be interpreted as
the impact of the other instruments on the particular
stock. For example, y3 component in the first period
significantly influences several building and construction
companies (MSZ, MSW, BDX). Due to that, it can be
treated as a component of broad market trends related to
the boom in the construction and property development
market which was an engine for the growth in the overall
market in 2003–2007.

The dependence structure shown in the diagrams in
Fig. 1 may be used for the noise elimination and trends
estimation. The elimination of the component inter-
pretable as interfering or external is possible by e.g.
assuming y1 = 0 and applying inverse transformation
to (3). As a result the filtered values of each individ-
ual instruments can be obtained. The selection of the
noise or random component may be based on morpholog-
ical entropy defined by (14). Such morphological noise
detection can be either applied for prediction improve-
ment [10].

TABLE I

The values of variance and morphological covariance mc.

B
D
X

B
ZW

M
SW

M
SZ

K
T
Y

sW
IG

80

m
W

IG
40

W
IG

20

BDX 0.30
BZW 0.08 0.35
MSW 0.11 0.14 0.44
MSZ 0.10 0.18 0.29 0.26
KTY 0.16 0.20 0.18 0.19 0.26

sWIG80 0.05 0.05 0.13 0.07 0.05 0.54
mWIG40 0.09 0.07 0.15 0.10 0.09 0.07 0.42
WIG20 0.05 0.09 0.15 0.10 0.08 0.03 0.04 0.51

Based on the value of the common separation matrix
it is possible to determine the values of the morpholog-

Fig. 3. The visualization of absolute values in A ma-
trices for the analyzed set of instruments in: (top)
2002.06.26–2007.03.30 period, (bottom) 2007.03.30–
2008.06.17 period.

ical variance/covariance (13), as shown in Table I. The
obtained values are directly related to the size/strength
of the components explanatory power. From a practical
point of view, the value of the morphological correlation,
combined with the knowledge on the structure of the base
components can contribute to variables selection, e.g. in
arbitrage pricing theory (APT) model which can be an
alternative to the models built based on principal com-
ponent analysis.

5. Conclusions

In this paper, we proposed the use of blind source sep-
aration methods to gain an insight into the inner struc-
ture of financial instruments, together with the assess-
ment of existing relationships in data which we refer to
as morphological analysis. For the separation stage we
have extended and modified the AMUSE algorithm to
combine the properties of the SOS BSS algorithms with
the ICA algorithms. The family of Perks distributions
is proposed to choose the non-linear function. Due to
the methodological character of our studies, the under-
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taken experiments had, to some extent, only exemplary
and introductory contribution. Nevertheless, the pro-
posed experiments confirmed the validity of theoretical
concepts discussed, giving interesting novel financial data
characteristics. Of course, there are many aspects open
to further research like: the analysis of the components
depending on the separation choice, development of a
consistent interpretation of the morphological informa-
tion derived from different sets of analyzed instruments
or/and linking the conclusions of the morphological study
with the existing financial and economic theories. We ex-
pect that the future research will address these issues and
contribute to the methodology on financial markets.
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