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We use methods of non-extensive statistical physics to describe quantitatively the memory effect involved
in returns of companies from WIG 30 index on the Warsaw Stock Exchange. The entropic approach based on
the generalization of the Boltzmann–Gibbs entropy to non-additive Tsallis q-entropy is applied to fit fat tailed
distribution of returns to q-normal (Tsallis) distribution. The existence of long term memory effects in price
returns generated by two-point autocorrelations are checked via calculation of the Hurst exponent within detrended
fluctuation analysis approach. The results are collected for diversified frequency of data sampling. We confirm
the perfect inverse cubic power law for low time-lags (≈1 min) of returns for the main WIG 30 index as well
as for the most of separate stocks, however this relationship does not hold for longer time-lags. The particular
emphasis is given to a study of an independent fit of probability distribution of positive and negative returns to q-
normal distribution. We discuss in this context the asymmetry between tails in terms of the Tsallis parameters q±.
A qualitative and quantitative relationship between the frequency of data sampling, the parameters q and q±, and
the corresponding main Hurst exponent H is provided to analyze the effect of memory in data caused by linear
and nonlinear autocorrelations. A new quantifier based on asymmetry of the Tsallis index instead of skewness of
distribution is proposed which we believe is able to describe the stage of market development and its robustness
to speculation.
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1. Introduction

Among variety of problems involved in study of finan-
cial markets, the presence of fat tails in distributions of
returns and their power law features [1–7] seem to be
crucial. The well known century-old Gaussian model [8]
simply underestimates the probability of large events and
therefore cannot be used as a proper model in financial
risk analysis. Events such as the 1987 stock market crash
where the Standard&Poor 500 index — the leading on US
stock market — dropped by a magnitude of over 20 stan-
dard deviations and many other crashes clearly observed
in long stock market history all over the world, would
have never occurred if probability distribution of financial
returns was of the Gaussian nature. Although the origin
of fat tails is not entirely known, it is agreed that their
source must lie in memory effects in data but of more
complicated origin than non-vanishing simple two-point
autocorrelation function. It is well established fact that
nonlinear correlations between returns visible as volatil-
ity clustering (i.e., volatility correlations seen in the sim-
plest case as autocorrelations between absolute returns)
generate fat distribution tails [9–11]. Also multifractal
properties of data in series are likely to produce similar
results [12]. Hence, the quantitative description of shape
of tails in distribution of financial data may serve as im-
portant global quantifier identifying much more complex
nonlinear phenomena which are difficult for simultaneous
detection and identification in complex financial system

with other tools. This is why it is interesting to look for
the statistical features of financial system in order to find
the reflection of much more complicated intrinsic varied
organization of financial complexity in these statistical
features.

2. Data analysis

The well-known fact connected with fat tails of re-
turn distribution in finance is the so-called inverse cubic
power law [13–15]. It concerns the cumulated probability
that for given time interval (time-lag) ∆t the probability
P (|r| > x) that a financial return r is in absolute value
larger than x has the power law form

P (|r| > x) ∼ x−ζ (1)
with ζ ≈ 3. This exponent is claimed [14, 15] to be almost
independent of ∆t, size of stock and period of measure-
ment. It is shown also to hold for different stock market
indices [7, 13–17] across different sizes of stocks, in dif-
ferent time periods and for time-lags in returns ranging
from 1 min to even one month. Its accuracy has been re-
ported over as many as 80 standard deviations for some
stock markets and applies as well to commodity mar-
ket [18] and to traded currency exchange rates [19, 20].
Note that within this paper we will use the standard def-
inition of return R(t,∆t) calculated for the time-lag ∆t:

R(t,∆t) =
p(t)− p(t−∆t)

p(t−∆t)
. (2)

(986)
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The statistically different stocks can be compared to-
gether only if the normalization procedure is applied to
returns, i.e., the normalized and centered returns r(t,∆t)
are considered

r(t,∆t) =
R(t,∆t)− 〈R(t,∆t)〉T

σT
, (3)

where 〈R(t,∆t)〉T is the mean value of R over the time
window T and σT is its standard deviation (σ2

T = 〈R2〉T−
〈R〉2T ).

A formalism grounded on statistical physics that ap-
pears to be attractively compact and economic for de-
scribing the inverse cubic law, other cases of fat tails of
probability distribution as well as the Gaussian distribu-
tions, is the one based on the generalized non-extensive
entropy proposed by Tsallis [21, 22]. This formalism leads
to equilibrium distributions of power law type instead of
exponential ones typical for extensive systems and gov-
erned by normal distribution. Indeed, the optimization
of non-additive Tsallis entropy yields, for the stationary
state, the following distribution of probabilities called q-
normal or Tsallis distribution [22]:

P (x) = Nq[1 +Bqx
2(q − 1)]

1
(1−q) , (4)

where
Bq = [(5− 3q)σ2]−1 (5)

and σ2 is the variance of data. The normalization con-
stant Nq for 1 < q < 3 (this case is the most interesting
since it develops for large |x| the power law form of dis-
tribution tails) is expressed by the Gamma–Euler func-
tion Γ as

Nq =
Γ ( 1

q−1 )

Γ ( 3−q
2q−2 )

√
q − 1

π
Bq. (6)

Note that Eq. (4) develops for |x| → ∞ the power law
form P (x) ∼ x2/(1−q) or equivalently at the level of cu-
mulative distribution leads to

P (|r| > x) ∼ x−
3−q
q−1 , (7)

which coincides with Eq. (1) and recovers the inverse cu-
bic law for q = 3/2. On the other hand, the limit q → 1
refers to the additive entropy case (the Boltzmann–Gibbs
entropy) which manifests as the well known normal dis-
tribution case [22] at the level of optimization of this
entropy. The q-normal distribution and in particular the
value of non-extensive q parameter will be therefore in
focus of our interest while making a fit to real financial
data. It should be stressed at this point that the mean-
ing, value and behavior of the non-extensive exponent,
or the Tsallis parameter q is still an open question in
non-extensive thermostatistics studies. In particular its
relation with memory effects in signal still requires ex-
planation. When moved into finance, this problem seems
to be even more interesting and intriguing.

We examined normalized and centered returns (see
Eq. (3)) of most developed companies in Poland quoted
on the Warsaw Stock Exchange which make the con-
tent of WIG 30 index. The statistics of these returns
was found from the very recent two years intraday and

interday quotations∗ in the period March 27, 2013–
March 31, 2015. First, all obvious artifacts in data
connected with periods of no quotes have been care-
fully removed. The examined period counted finally
T ≈ (7.6−18) × 104 data points (depending on partic-
ular stock) for the time-lag ∆t = 1 min. Then we con-
structed, separately for each company, the normalized
and centered returns r(t) calculated for all other dis-
cussed time-lags ∆t, i.e., the intraday returns for ∆t = 5–
60 min and the interday returns for ∆t = 1−4 days, all
in moving time window every 1 min. The final results for
various companies have been found qualitatively identi-
cal and quantitatively very close together, therefore we
present them here only for chosen companies. We focused
on good representative examples of different economic
branches in Poland: banking (PKO BP), telecommuni-
cation (Orange), fuel and energy sector (PKN Orlen) and
insurance sector (PZU). Our findings were then com-
pared with the results of capital weighted stock index
WIG 30 which can be considered as the economic “refer-
ence frame”, since it accommodates full variety of stocks
and therefore should be more robust to speculation made
by investors within just one branch.

3. Results and concluding remarks

Figures 1–4 show the quality of fit to the Tsallis distri-
bution for returns of companies from WIG 30 for variety
of time-lags ranging from 1 min to 4 days. The log-linear
scale is applied to reveal all data details more exactly.
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Fig. 1. Probability density function in log–linear scale
of normalized and centered returns for Orange stock
from WIG 30 index calculated for various time-lags ∆t
from the period: March 2013–March 2015. The plots for
different ∆t were drawn as dots and are relatively ar-
tificially rescaled vertically 10 times for better display.
The dashed line corresponds to Gaussian distribution
while solid lines present the best fit of q-normal Tsal-
lis distribution done separately to positive and negative
returns.

∗data taken from: www.gpwinfostrefa.pl; www.
inwestoronline.pl; stooq.pl
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www.inwestoronline.pl
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Fig. 2. The same as in Fig. 1 for PKN Orlen stock.
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Fig. 3. The same as in Fig. 1 for PKO BP stock.

Figure 5 shows also for comparison how such a fit works
for returns of WIG 30 index. The best fit was obtained
here as the minimal squared distance of the q-normal
distribution profile and the real data distribution (in log
scale). However we did not stop fitting data to symmetric
Tsallis distribution. All fits have been done twice. First
we made them for all returns which gave us the best fit
q value for all returns independently of their sign. Then,
the same was performed separately for positive and neg-
ative returns. We have introduced then the respective
q− and q+ values of the Tsallis index for the left and
right distribution tail. The latter case is actually shown
in plots in Figs. 1–5. This enables to register in quan-
titative way the presence of asymmetry between heavy
tails. Our approach differs from the one based simply on
skewness of probability distribution, since we consider
our scheme as more indicative for the different form of
far (|x| → ∞) left and right tails. This asymmetry was
not so far a subject of deep study in econophysics (see,
however [20]).

All the fitting results have been summarized for com-
parison in Table I. The Tsallis index has also been shown
once more for better visualization as a function of the
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Fig. 4. The same as in Fig. 1 for PZU stock.
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Fig. 5. The same as in Fig. 1 for the capital weighted
WIG 30 index.

time-lag ∆t — in Fig. 6 for separate companies and
in Fig. 7 for WIG 30 data.

The above findings have been confronted with the re-
sults of two-point linear autocorrelation function of re-
turns C2(s) = 〈riri+s〉 with time-lag s in order to re-
veal any similarities if present. The average is taken
over points in considered time window. Recall that in
a case of long term memory caused by linear correlation
in data, C2(s) is mainly shaped according to the analyti-
cally proven power law: C2(s) ∼ H(2H−1)s2H−2 [23] by
the Hurst exponent 0 ≤ H ≤ 1 [24]. The provided power
law form explains that for H = 1/2 returns are uncorre-
lated, once other values of H correspond respectively to
linearly anticorrelated (0 < H < 1/2) or linearly autocor-
related (1/2 < H < 1) data. We used DFA technique [25]
to calculate values of H exponent. This method seems to
be most reliable at present comparing with other avail-
able in literature. The H values in Figs. 7, 8 have been
calculated with high precision δH ∼ 0.01. The outcomes
of this calculation are shown as a function of time-lags
in Fig. 7 (bottom part) for WIG 30 data and in the fol-
lowing Fig. 8 for ingredient examined stocks.
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TABLE I
Results of q-normal distribution fit to statistics of returns
for chosen stocks within WIG 30 index. Shown are also
results of independent fit of Tsallis parameter q± to the
right and left tails of probabilty distribution.

∆t
Tsallis
index

OrangePL
PKN
Orlen

PKO
BP

PZU WIG 30

q− 1.42 1.50 1.46 1.46 1.51
1 min q 1.45 1.45 1.41 1.46 1.49

q+ 1.49 1.41 1.38 1.47 1.48
q− 1.48 1.47 1.47 1.45 1.48

5 min q 1.48 1.44 1.43 1.44 1.47
q+ 1.49 1.44 1.40 1.43 1.46
q− 1.50 1.46 1.44 1.46 1.46

10 min q 1.50 1.46 1.46 1.46 1.44
q+ 1.47 1.46 1.49 1.44 1.41
q− 1.54 1.44 1.39 1.44 1.43

30 min q 1.47 1.38 1.37 1.43 1.45
q+ 1.45 1.38 1.36 1.43 1.46
q− 1.47 1.42 1.44 1.35 1.41

60 min q 1.47 1.42 1.42 1.40 1.41
q+ 1.45 1.39 1.34 1.40 1.41
q− 1.38 1.26 1.26 1.37 1.19

1 day q 1.35 1.25 1.27 1.35 1.18
q+ 1.33 1.07 1.28 1.10 1.15
q− 1.37 1.22 1.33 1.38 1.13

2 days q 1.32 1.20 1.24 1.33 1.20
q+ 1.20 1.11 1.17 1.03 1.23
q− 1.38 1.23 1.38 1.38 1.28

3 days q 1.27 1.20 1.26 1.33 1.25
q+ 1.21 1.01 1.23 1.03 1.20
q− 1.33 1.30 1.33 1.33 1.06

4 days q 1.25 1.29 1.28 1.29 1.20
q+ 1.16 1.03 1.02 1.16 1.24

Our first observation is that the cubic power law (q =
3/2) can be very well recognized for WIG 30 index for
∆t = 1 min (see Table I and Figs. 6, 7). The sepa-
rate stocks obey this law for 1 < ∆t < 30 min, usually
with minor time delay comparing with the main index.
However, already for time-lags ∆t ≈ 60 min we observe
remarkable departure from the cubic law with q ≈ 1.4
corresponding to ζ = 4 (see Eq. (1)). We checked also
that the value q = 1.2 suggested as asymptotic one for
developed markets (see, e.g., [26]) is reached for Polish
market for time-lags ten times shorter than reported for
mature stocks as long as ∆t ≈ 40 days. As a result distri-
bution of intraday returns for ∆t ≥ 1 day starts in case
of Polish stocks also from the lower value (q = 1.2−1.3)
than reported for the established US market (q = 1.4)
in [26].

Another observation is that the Tsallis parameter q and
the Hurst exponent H are shown to be in principle not
quantitatively connected for real data. This situation is
explicitly revealed in Fig. 7 where intraday returns ex-
hibit fat tails with varying q ≈ 1.2–1.25, while H = 0.5
indicates simultaneously that no linear autocorrelation

TABLE II

Relative asymmetry ratio |δq|
q

of Tsallis distribution to
intraday stock data on Polish market calculated from
fitting results shown in Table I. The averaged relative
asymmetry ratio 〈 |δq|

q
〉 taken over all intraday time-lags

from 1 min to 60 min is also shown for individual repre-
sentative components of WIG 30.

∆t OrangePL
PKN
Orlen

PKO
BP

PZU WIG 30

1 min 4.8% 6.2% 5.7% 0.7% 2.0%
5 min 0.7% 2.1% 4.9% 1.4% 1.4%

|δq|
q

10 min 2.0% 0.0% 3.4% 1.4% 3.5%
30 min 6.1% 4.3% 2.2% 0.7% 2.1%
60 min 1.4% 2.1% 7.0% 3.6% 0.0%
〈 |δq|
q
〉 3.0% 3.0% 4.6% 1.5% 1.8%

TABLE III

Same as in Table I but for interday time-lags from 1 day
to 4 days.

∆t OrangePL
PKN
Orlen

PKO
BP

PZU WIG 30

1 day 3.7% 15.2% 1.6% 20.0% 3.4%
|δq|
q

2 days 12.9% 9.2% 12.9% 26.3% 8.3%

3 days 13.4% 18.3% 11.9% 26.3% 6.4%
4 days 13.6% 20.9% 24.2% 13.2% 15.0%
〈 |δq|
q
〉 10.9% 15.9% 12.7% 21.5% 8.3%

exist in the corresponding series of WIG 30. This result
clearly points that higher order correlations and nonlin-
ear correlations play fundamental role in genesis of fat
tails in distribution of returns on stock market, and that
expectation that q = 1 should correspond to H = 1/2 is
not fundamentally confirmed therefore. Note, however,
that due to accuracy in H exponent calculation within
DFA, the evolution of H exponent with time-lag ∆t re-
veals the presence of some residual linear autocorrelations
for returns in this complex stock market system.

In particular, the negative linear autocorrelation (H ≈
0.45) can be seen for all ingredient stocks for ∆t ≈ 1 min
which agrees with results calculated directly for financial
data (see, e.g. [20]). For longer time-lags stocks become
slightly persistent with maximum of H ≈ 0.55 around
∆t ≈ 20−40 min. The diversified level of 0.4 ≤ H ≤ 0.55
is seen for interday data of separate stocks. One can
observe also that the WIG 30 index is remarkably more
stable for interday data since it shows no linear autocor-
relations present for such quotations in the considered
large 2 years window, while it does reveal (like its com-
ponents) some residual positive persistence for interday
returns (see the bottom part in Fig. 7).

The deeper analysis of memory effects in stock data can
be done looking at asymmetry between left and right tail
of probability distribution. We considered an indepen-
dent fit of q-normal Tsallis distribution done separately
for both distribution tails, instead of the standard skew-
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ness. This way two more Tsallis indices q+ and q− are
calculated as result of fit to positive and negative returns
correspondingly. These values can be used as an alter-
native description of asymmetry between right and left
tails — particularly for large absolute returns. The found
q+ and q− values are collected for main stocks on Polish
market and for WIG 30 in Table I. this point it is ob-

vious to introduce the asymmetry index δq ≡ q+ − q−.
Such asymmetry index does not show any uniform be-
havior along ∆t — neither its absolute value |δq| does —
contrary to behavior of the main Tsallis index q which
decreases for WIG 30 with growing ∆t to the asymptotic
value q ' 1.2 at ∆t & 1 day. This is seen clearly in right
parts of Fig. 6.
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Fig. 6. Dependence between Tsallis parameters: q (left) (• all returns) and q± (right) (N positive returns, � negative
returns) versus the time-lag used for calculation of returns. Inbox in the right top corner shows magnification of this
dependence for higher frequency data ∆t ≤ 60 min. Note that the horizontal axis in these plots show the clock time
which is equivalent to stock trading time only for time-lags ∆t < 480 min. For other ∆t values the proper adjustment
between clock and trading time is necessary — the clock time is roughly three times larger than trading time because
of amount of trading hours in a day.

However, let us have a look at the relative absolute
asymmetry between tails of positive and negative returns.
It can be defined in straightforward way as:

|δq|
q

=
|q+ − q−|

q
. (8)

Its values are collected in Tables II, III. We propose
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Fig. 7. Same as in Fig. 6 but for WIG 30 signal.(• all
returns, N positive returns, � negative returns).
The bottom plot shows additionally the Hurst expo-
nent H values calculated using DFA technique for inte-
grated time series of returns generated at different time-
lags ∆t.

to use it as a new quantifier measuring the normalized
asymmetry between temptation among investors (letting
a stock to go up) and the level of fear among traders
(pushing the market prices down). The value of |δq|/q
should be therefore bigger for younger and more spec-
ulative markets than for well established ones. In the
case of developing stock markets this relative asymmetry
index should manifest the presence of more unbalanced
emotions among traders. Its value should presumably
be less remarkable for the whole market index — as the
capital-weighted average measure of stock prices — than
for returns of particular stock. This property is really
seen in Tables II, III for real data.

Some regularity can be noticed for |δq|/q index from
Tables II, III. It exhibits much different values for
interday and intraday data. Indeed, if one takes the aver-
age over various considered time-lags, the value 〈|δq|/q〉
for distribution of interday returns on Polish stock ex-
change market is 〈|δq|/q〉inter . 5% while the correspond-
ing average for intraday returns is remarkably higher
(〈|δq|/q〉intra & 10%). This happens for the most of
stocks. Thus we may conclude that the average relative
asymmetry index is about 3–15 times larger for intraday
returns than for interday data depending on particular
stock. This noticeable fact requires some explanation.
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Fig. 8. Dependence between Hurst exponent and the
time-lag ∆t for discussed Polish stocks from WIG 30.
The inboxes in the right top corners reveal this depen-
dence for better display for higher frequencies of data
collection ∆t ≤ 60 min.

We hope to have the one. It is likely that the mechanism
standing behind is a reflection of different tools basically
used by investors in interday and intraday trading. Pre-
sumably, in the first case stochastic econometric models
are mostly used by institutional investors who trade in
short time scale while in the second case the traditional
technical analysis is applied by individual traders who
trade more often in longer time horizon.

Anyway these results lead to interesting observation
that trading in larger time horizon involves more asym-
metric price speculation, i.e., it has features of less bal-
anced temptation over fears among investors. Thus it
seems interesting to use this new quantifier and investi-
gate further its properties also for various foreign stocks
and time-lags. The regularity of |δq|/q and its remarkable
difference between intraday and interday trading may be
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useful for independent detection of speculation level on
stock market, particularly because we observe also that
positive returns tend to the random case (q ≈ 1) usually
much faster than negative returns do (see Fig. 6). This
asymmetry strongly depends on the frequency of data
sampling and trials to describe left and right tail of re-
turn distribution where just one value of q makes a clear
simplification of the problem. Thus the memory effect in
returns is evidently asymmetric for positive and negative
returns and requires further detailed study not only in
case of Polish stock market.
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