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We prove that if the principle of equivalent utility under the cumulative prospect theory is positively homoge-
neous on a relatively small family of risks for every non-negative initial wealth level, then a value function is linear
for gains and losses, but, in general, it needs not be linear.
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1. Introduction

Assume that (Ω ,Σ , P ) is a probability space and
L∞(Ω ,Σ , P ) is a linear space of all bounded random
variables on (Ω ,Σ , P ). Let ∆ ⊂ L∞(Ω ,Σ , P ) be a fam-
ily of non-negative random variables, describing the risks
which are covered by an insurance company. Assume
that the company has a continuous and strictly increas-
ing utility function u : R → R and the initial wealth
w. Using the properties of u, it is not difficult to show
that, for every X ∈ ∆, there exists a unique real number
Hw(X) such that

u(w) = Eu(w +Hw(X)−X). (1)
In this way, Eq. (1) defines a functional Hw : ∆ → R,
called the principle of equivalent utility (under the ex-
pected utility theory). It is important for the theoretical
as well as for the practical reasons and, in fact, it is one
of the most frequently studied premium principles. In
the case where w = 0, the principle of equivalent utility
is called the zero utility principle.

In a paper by Kałuszka and Krzeszowiec [1], the prin-
ciple of equivalent utility under the cumulative prospect
theory has been investigated. This approach leads to the
equation

u(w) = Egh(u(w +Hw(X)−X)), (2)
where Egh is a generalized Choquet integral with respect
to the probability distortion functions g and h for gains
and losses, respectively and u : R → R is a value func-
tion. Let us recall that for a given distortion function
g : [0, 1] → [0, 1], that is a non-decreasing function
with g(0) = 0 and g(1) = 1, and a random variable
X ∈ L∞(Ω ,Σ , P ), the Choquet integral related to g is
defined in the following way:

Eg(X) =

∫ 0

−∞
(g(P (X > t))− 1)dt

+

∫ ∞
0

g(P (X > t))dt. (3)

Several details concerning the Choquet integral and its
properties can be found in [2]. The generalized Choquet
integral, related to the distortion functions g (for gains)
and h (for losses), is defined as follows:

Egh(X) = Eg(max{X, 0})− Eh(max{−X, 0})

for X ∈ L∞(Ω ,Σ , P ). (4)
In Ref. [1], among others, the positive homogeneity of
the principle of equivalent utility has been considered.
Assuming that aX ∈ ∆ for X ∈ ∆, a > 0, a premium
principle H is said to be positively homogeneous (or scale
invariant) on the family ∆, provided H(aX) = aH(X)
for X ∈ ∆ and a > 0. Let us introduce the following
notation. For every x > 0 and p ∈ [0, 1], by (x, p) we de-
note the random variable X such that P (X = 0) = 1− p
and P (X = x) = p. Furthermore, we set
X2 := {(x, p)|x > 0, p ∈ [0, 1]}.

In Ref. [1] (cf. Theorem 5) it has been proved that if
u : R → R is a continuous and strictly increasing value
function with u(0) = 0, g and h are continuous prob-
ability distortion functions for gains and losses, respec-
tively such that, for every p ∈ (p0, 1), with some fixed
p0 ∈ (0, 1), it holds

g(1− p)h(p) > 0 (5)
and the premium H0 is positively homogeneous on X2,
then

u(x) =

{
−b(−x)r for x < 0,

axr for x ≥ 0
(6)

with some a, b, r > 0. Conversely, if for some fixed
p0 ∈ (0, 1) and for every p ∈ (p0, 1), (5) holds and u is
of the form (6) with some a, b, r > 0, then the premium
H0 is positively homogeneous on L∞(Ω ,Σ , P ). Further-
more, if the premiums H0 and Hw for some w > 0, are
positively homogeneous on X2, then

h(p) = 1− g(1− p) for p ∈ (0, 1) (7)
and

u(x) = αx for x ∈ R (8)
with some α > 0. Conversely, if (7) holds and u is of
the form (8) with some α > 0, then, for every w ≥ 0, the
premium Hw is positively homogeneous on L∞(Ω ,Σ , P ).
These results have been generalized by Chudziak et
al. [3], who proved that if

H0(aiX) = aiH0(X) for X ∈ X2, i ∈ {1, 2}

where a1, a2 ∈ (0,∞) \ {1} are such that ln a1
ln a2

is irra-
tional, then u is of the form (6) with some a, b, r > 0. If,
additionally,

Hw(aiX) = aiHw(X) for X ∈ X2, i ∈ {1, 2},
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where w > 0 is fixed, then (7) and (8) hold. According
to the methods applied in the proofs of the above re-
sults, a positive homogeneity has to be satisfied on X2.
From a formal point of view, this assumption requires
the property {P (A) : A ∈ Σ} = [0, 1] which, in fact, is
not explicitly expressed in the papers (it is known that
every non-atomic probability measure has such a prop-
erty). On the other hand, as X2 consists of the risk (x, p),
where p ∈ [0, 1] and x > 0 are arbitrary, from a practical
point of view, it could be difficult to check, if a positive
homogeneity holds on the whole X2. It seems to be rea-
sonable to assume that a positive homogeneity holds for
as small family of risk as possible and to derive from such
an assumption the forms of the premium and the value
function. Following this idea, in our paper we deal with
the positive homogeneity of the premium of equivalent
utility on the family of risks
X2,p := {(x, p)|x > 0}, (9)

where p ∈ (0, 1) is fixed. Therefore, formally we need
only to assume that the probability measure P is non-
trivial, that is it takes at least one value from the inter-
val (0, 1). Practically, the family X2,p can describe, for
example, the risk of a car accident, where p is a known
probability of an accident and x is a value of loss.

It is remarkable that the positively homogeneous pre-
miums of equivalent utility under the expected utility
and under the rank-dependent utility have been studied
by Reich [4] and Heilpern [5], respectively.

2. Results

Note that, if X is a random variable, taking the values
x and y with probabilities P (X = x) = q and P (X =
y) = 1 − q, where x, y ∈ R, q ∈ [0, 1], then, applying (3)
and (4), after a standard computation, we get

Egh(X) = (1− g(1− q))x+ g(1− q)y

whenever 0 ≤ x < y, (10)

Egh(X) = (1− h(q))y + h(q)x

whenever x < y ≤ 0 (11)
and

Egh(X) = g(1− q)y + h(q)x

whenever x < 0 < y. (12)
The following theorem is a main result of the paper.
Theorem 2.1 Assume that p ∈ (0, 1) is fixed, X2,p is

given by (9), g and h are probability distortion functions
for gains and losses, respectively such that (5) holds and
u : R → R is a continuous and strictly increasing value
function with u(0) = 0. Then the following two state-
ments are equivalent:

(i) for every w ≥ 0, Hw is a positively homogeneous
premium of equivalent utility on the family X2,p;

(ii) there exists an α > 0 such that

u(x) =

{
1−g(1−p)
h(p) αx for x < 0,

αx for x ≥ 0
(13)

and
Hw((x, p)) = (1− g(1− p))x

for w ≥ 0, x > 0. (14)

Proof. Assume that (i) holds. Then
Hw((ax, p)) = aHw((x, p)) for w ≥ 0, a, x > 0.

Setting in this equality x = 1, we get
Hw((a, p)) = c(w)a for w ≥ 0, a > 0, (15)

where a function c : [0,∞) → R is given by c(w) =
Hw((1, p)) for w ≥ 0. Since a generalized Choquet inte-
gral is monotone and Egh(c) = c for c ∈ R (see Lemma
1 in [1]), taking into account the fact that u is strictly
increasing, in view of (15), we obtain

u(w + c(w)x− x) = Eghu(w +Hw((x, p))− x) ≤

Eghu(w +Hw((x, p))− (x, p)) ≤

Eghu(w +Hw((x, p))) = Eghu(w + c(w)x) =

u(w + c(w)x)for w ≥ 0, x > 0.

Furthermore, from (2) it follows that:
Eghu(w +Hw((x, p))− (x, p)) = u(w)

for w ≥ 0, x > 0. (16)
Hence

u(w + c(w)x− x) ≤ u(w) ≤ u(w + c(w)x)

for w ≥ 0, x > 0

and so, as u is strictly increasing, we conclude that
w + c(w)x− x ≤ w ≤ w + c(w)x for w ≥ 0, x > 0.

This means that
c(w) ∈ [0, 1] for w ≥ 0. (17)

Suppose that c(w) = 1 for some w ≥ 0. Then, in view of
(15), we have Hw((x, p)) = x for x > 0. Therefore, for
every x > 0, a random variable u(w+Hw((x, p))−(x, p))
takes two non-negative values u(w), u(w+ x) with prob-
abilities p and 1 − p, respectively. Therefore, as u(w) <
u(w + x) for every x > 0, applying (10), from (16) we
derive

(1− g(1− p))u(w) + g(1− p)u(w + x) = u(w)

for x > 0.

Hence
g(1− p)(u(w + x)− u(w)) = 0 for x > 0

which, in view of (5), gives a contradiction. In this way
we have proved that c(w) 6= 1 for w ≥ 0. Therefore, tak-
ing into account (17), we conclude that

c(w) ∈ [0, 1) for w ≥ 0. (18)
We show that
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c(0) 6= 0. (19)
For the proof by contradiction, suppose that c(0) = 0.
Then, in virtue of (15), we get H0((x, p)) = 0 for
x > 0. Hence, for every x > 0, a random variable
u(H0((x, p))−(x, p)) takes two non-positive values u(−x)
and u(0) = 0 with probabilities p and 1− p, respectively.
Since u(−x) < 0 for x > 0, making use of (11), from
(16) we derive that h(p)u(−x) = 0 for x > 0. As u is
strictly increasing, u(0) = 0 and (5) holds, this yields a
contradiction. Therefore, (19) is proved.

According to (15) and (18), for every w ≥ 0 and x >
w

1−c(w) , a random variable u(w+Hw((x, p))−(x, p)) takes
a negative value u(w + (c(w) − 1)x) with a probability
p and a positive value u(w + c(w)x) with a probability
1− p. Hence, making use of (2) and (12), we get

g(1−p)u(w+c(w)x)+h(p)u(w+(c(w)−1)x) = u(w)

for w ≥ 0, x >
w

1− c(w)
. (20)

Setting in (20) w = 0, we obtain
g(1− p)u(c(0)x) + h(p)u((c(0)− 1)x) = 0

for x > 0. (21)
Since, in view of (18), x

c(0)−1 > 0 for x < 0, replacing in
this equality x by x

c(0)−1 and making use of (5), we get

u(x) = −g(1− p)
h(p)

u

(
c(0)

c(0)− 1
x

)
for x < 0. (22)

Furthermore, as w + (c(w) − 1)x < 0 for w ≥ 0 and
x > w

1−c(w) , taking into account (20) and (22), for every
w ≥ 0 and x > w

1−c(w) , we obtain

g(1− p)u(w + c(w)x)− g(1− p)

×u
(

c(0)

c(0)− 1
(w + (c(w)− 1)x)

)
= u(w). (23)

Since
w− c(0)−1

c(0)
z

1−c(w) > w
1−c(w) for w ≥ 0, z > 0, inserting into

the last equality x =
w− c(0)−1

c(0)
z

1−c(w) , we obtain

u

(
1− c(0)
c(0)

c(w)

1− c(w)
z +

w

1− c(w)

)
= u(z) +

u(w)

g(1− p)
for w ≥ 0, z > 0. (24)

As u is continuous, passing in (24) to the limit with z →
0+, we get

u(w)

g(1− p)
= u

(
w

1− c(w)

)
for w ≥ 0. (25)

Therefore, (24) becomes

u

(
1− c(0)
c(0)

c(w)

1− c(w)
z +

w

1− c(w)

)
= u(z)

+u

(
w

1− c(w)

)
for w, z ≥ 0. (26)

Now, we are going to prove that c is continuous on [0,∞).
Suppose that this is not true, that is c is discontinuous
at some w0 ≥ 0. Since, in view of (18), c is a bounded
function, this means that there exists a sequence (wn) of
positive real numbers such that limn→∞ wn = w0 and a

sequence (c(wn)) is convergent to a limit different from
c(w0). Put d := limn→∞ c(wn). Then d 6= c(w0) and, by
(18), d ∈ [0, 1]. Moreover, according to (25), for every
n ∈ N, we have

u(wn)

g(1− p)
= u

(
wn

1− c(wn)

)
.

Letting in this equality n → ∞, using the continuity of
u and applying (25) again, we obtain

u

(
w0

1− c(w0)

)
= lim
n→∞

u

(
wn

1− c(wn)

)
. (27)

If d 6= 1 then using the continuity of u, in view of (27),
we get

u

(
w0

1− c(w0)

)
= u

(
w0

1− d

)
.

Since u is strictly increasing, this implies that d = c(w0),
which yields a contradiction. If d = 1 and w0 > 0, then
limn→∞

wn

1−c(wn)
= ∞, which contradicts (27), as u is

strictly increasing. Finally, if d = 1 and w0 = 0 then from
(27) we derive that limn→∞

wn

1−c(wn)
= 0. Therefore, as

u is continuous, setting in (26) w = wn for n ∈ N and
letting n→∞, we obtain

lim
n→∞

u

(
1− c(0)
c(0)

c(wn)

1− c(wn)
z +

wn
1− c(wn)

)
= u(z)

for z ≥ 0.

On the other hand, we have

lim
n→∞

(
1− c(0)
c(0)

c(wn)

1− c(wn)
z +

wn
1− c(wn)

)
=∞

for z ≥ 0,

which again yields a contradiction. In this way we have
proved that c is continuous.

Define the functions a, b : [0,∞) → R in the following
way:

a(w) =
1− c(0)
c(0)

c(w)

1− c(w)
for w ∈ [0,∞), (28)

b(w) =
w

1− c(w)
for w ∈ [0,∞). (29)

Obviously, as c is continuous, so are a and b. Further-
more, according to (25) and (29), we have

b(w) = u−1
(

u(w)

g(1− p)

)
for w ≥ 0.

This means that b is injective. Moreover, b(0) = 0 and,
making use of (18), we get limw→∞ b(w) =∞. Therefore,
b is a bijection on [0,∞). Note also that from (26)–(29)
it follows that:

u(a(w)z + b(w)) = u(z) + u(b(w)) for w, z ≥ 0.

Hence
f(F (w)z + w) = f(z)f(w) for w, z ≥ 0, (30)

where a function f : R→ R is given by
f(x) = eu(x) for x ∈ R (31)

and F : R → R is an arbitrary continuous extension of
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(a ◦ b−1) from [0,∞) onto R. In particular, we have
F (x) = (a ◦ b−1)(x) for x ≥ 0. (32)

Equation (30) is the Gołąb–Schinzel type functional
equation on [0,∞). Since f and F are continuous, f
is strictly increasing and f(x) > 0 for x ∈ R, applying
Theorem 3.4 in Ref. [6], we conclude that one of the fol-
lowing two possibilities holds:

1. there exist α, r > 0 such that f(x) = (1 + αx)r for
x ≥ 0 and

F (w) = 1 + αw for w ≥ 0; (33)
2. F = 1 and there exists an α > 0 such that
f(x) = eαx for x ≥ 0. (34)
In the first case, making use of (28), (29), (32), and

(33), we get
1− c(0)
c(0)

c(w)

1− c(w)
= a(w) = F (b(w)) = 1 +

αw

1− c(w)
for w ≥ 0.

Hence
c(w) = c(0)(1 + αw) for w ≥ 0

and so, in view of (19), we obtain limw→∞ c(w) = ∞,
which contradicts (18).

If the second possibility holds then, by (32), we have
a(w) = 1 for w ≥ 0 which, together with (28), gives

c(w) = c(0) for w ≥ 0. (35)
Furthermore, (31) and (34) imply that u(x) = αx for
x ≥ 0. Thus, taking into account (22), we get

u(x) =
c(0)g(1− p)
(1− c(0))h(p)

αx for x < 0.

Consequently, putting β := c(0)g(1−p)
(1−c(0))h(p)α, we conclude

that β > 0 and

u(x) =

{
βx for x < 0,

αx for x ≥ 0.
(36)

Inserting into (20) u of the form (36) and making use of
(35), for every w ≥ 0 and x > w

1−c(0) , we obtain

(g(1− p)α+ h(p)β − α)w + (g(1− p)αc(0)

+h(p)β(c(0)− 1))x = 0.

Hence
g(1− p)αc(0) + h(p)β(c(0)− 1) = 0 (37)

and
g(1− p)α+ h(p)β − α = 0. (38)

Multiplying both sides of (38) by c(0) and subtracting
obtained in this way equality from (37), we get

h(p) = c(0)
α

β
. (39)

From (37) and (39) we derive that
g(1− p) = 1− c(0). (40)

Therefore, making use of (15) and (35), we obtain (14).
Furthermore, (39) and (40) imply that β = 1−g(1−p)

h(p) α

which, together with (36), gives (13). Consequently, (ii)

is valid.
A straightforward calculation shows that if u is of the

form (13) with some α > 0 and (14) holds then, for ev-
ery w ≥ 0, Hw is a positively homogeneous premium of
equivalent utility on the family X2,p. Thus, (ii) implies
(i), which completes the proof.

Corollary 2.2 Assume that L∞(Ω ,Σ , P ) is a prob-
ability space such that {P (A) : A ∈ Σ} = [0, 1], g
is a continuous at 0 probability distortion functions for
gains, h is a continuous at 1 probability distortion func-
tions for losses and there exists a sequence (pn) of el-
ements of the interval (0, 1) such that limn→∞ pn = 1
and g(1 − pn)h(pn) > 0 for n ∈ N. If, for every w ≥ 0,
the premium Hw is positively homogeneous on the family⋃
n∈N X2,pn , then
h(pn) = 1− g(1− pn) for n ∈ N (41)

and u is of the form (8) with some α > 0.

Proof. Assume that, for every w ≥ 0, the premium Hw is
positively homogeneous on the family

⋃
n∈N X2,pn . Ap-

plying Theorem 2.1, we conclude that there is an α > 0
such that, for every n ∈ N, it holds

u(x) =

{
1−g(1−pn)
h(pn)

αx for x < 0,

αx for x ≥ 0.
(42)

Since g is continuous at 0, h is continuous at 1, g(0) = 0
and h(1) = 1, letting in (42) n → ∞, we get (8). Fur-
thermore, (8) and (42) imply (41).

3. Conclusion

Inspired by the results in [1], we have considered the
positively homogeneous premium of equivalent utility un-
der the cumulative prospect theory. We have proved
that if the probability distortion functions for gains and
losses satisfy some natural assumptions and for every
non-negative wealth level, the premium is positively ho-
mogeneous on a relatively small family of risks, then the
value function is linear for gains and losses, but, in gen-
eral, it is not linear.

References

[1] M. Kałuszka, M. Krzeszowiec, Insur. Math. Econ.
50, 159 (2012).

[2] D. Denneberg, Lectures on Non-Additive Measure and
Integral, Kluwer, Boston 1994.

[3] J. Chudziak, M. Halicki, S. Wójcik, Acta Phys. Pol.
A 127, A-29 (2015).

[4] A. Reich, ASTIN Bull. 14, 123 (1984).
[5] S. Heilpern, Insur. Math. Econ. 33, 67 (2003).
[6] J. Chudziak, Z. Kočan, Results Math. 66, 199 (2014).

http://dx.doi.org/10.1016/j.insmatheco.2011.11.001
http://dx.doi.org/10.1016/j.insmatheco.2011.11.001
http://dx.doi.org/10.12693/APhysPolA.127.A-29
http://dx.doi.org/10.12693/APhysPolA.127.A-29
http://dx.doi.org/10.1016/S0167-6687(03)00144-6
http://dx.doi.org/10.1007/s00025-014-0372-8

