
Vol. 129 (2016) ACTA PHYSICA POLONICA A No. 5

Proceedings of the 8th Polish Symposium of Physics in Economy and Social Sciences FENS, Rzeszów, November 4–6, 2015

Multiway Similarity Approach Based on Divergence Functions
and Smoothness Measure

R. Szupiluk∗ and T. Sobon
Warsaw School of Economics, al. Niepodległości 162, 02-554 Warsaw, Poland

In this paper we present a novel similarity measure method for financial data. In our approach, we propose the
assessment of the similarity in a coherent hierarchical and multi-faceted way, following the general scheme where
various detailed basic measures may be used like the Fermi–Dirac divergence, Bose–Einstein divergence, or our
new smoothness measure. The presented method is tested on benchmark and real stock markets data.
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1. Introduction

The assessment of similarity is one of the fundamen-
tal issues occurring in the analyses, models and theo-
ries of financial markets. In particular, it is a signifi-
cant element of the investment process where fundamen-
tal economic and financial analysis is not the key factor
of price shaping. This is also the case in trading systems
especially for high frequency trading (HFT), where fun-
damental factors are generally stable during the invest-
ing actions. The popularity of such investing approaches
does not mean that the similarity problem is clear or
solved. On the contrary, we can say that generally the
problems with market similarities, patterns and associ-
ated with them transaction rules lead to hot discussions
on how to measure, detect or recognize similar stock for-
mations and their connections to assumed patterns [1].
The assessment of similarity is one of those skills of a
human mind that we use quite frequently and efficiently,
but it is not easy to describe, explain, or define it pre-
cisely. For example, while in many cases it is relatively
easy to see a family resemblance, a formal justification
for such similarities is usually ambiguous and vague. We
have an analogical situation in the case of financial time
series, where human perception can be often far from for-
mal approaches. Our aim is to find a method that will
give results consistent with the human perception.

From the calculation perspective, we understand ob-
jects lying close to each other as similar but to some
extent tight-knit/cohesive or interdependent. With re-
gard to the similarity of time series we can speak about
the direct similarity (distance) between the data as well
as the distance between certain characteristics of the sig-
nals. Variation, smoothness and sparsity are most com-
mon among these characteristics. Although the concept
of similarity as well as relationships, variability, smooth-
ness can be defined, measured and interpreted differently,
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at the same time in many cases and views they also ap-
proach, penetrate and intertwine. For example, in case of
the multi-dimensional variability calculated as the vari-
ance, it depends also on the value of covariance which is
usually interpreted as a measure of dependence.

In practical applications we can distinguish two main
approaches for the similarity measure. The first one is
based on the basic or elemental measures like covari-
ance, norms or divergences. The second approach uses
complex systems of pattern exploration such as neural
networks, decisions trees, or support vector machines
(SVMs), which in many cases is a very effective solu-
tion. However, systems of pattern exploration are based
on basic measures and their construction requires a cer-
tain learning process based on prototypes. Therefore,
their effectiveness can be treated as a derivative of the
proper basic functions evaluation and good prototypes
choice. It should also be noted that complex systems act
often like black boxes that may be successfully applied for
individual solutions but their theoretical value is limited.

In our concept we propose an innovative method which
can be treated as a compromise between systems of pat-
tern exploration and basis/elemental measures. We as-
sess the similarity in a coherent hierarchical and multi-
faceted way, following the defined general scheme where
various detailed basic measures may be used, such as
second order statistics (SOS) and higher order statistics
(HOS) covariances, norms or divergence functions. On
the level of such basis measures we propose our inno-
vative RS divergence concept, which can be connected
with well known Fermi–Dirac and Bose–Einstein diver-
gences. This approach is specially addressed for direct
price analysis, where signals are nonnegative. Of course,
the method can be applied for any data after simple pre-
processing to non-negativity.

2. Similarity and second order statistics —
limitation and inspiration

Standard quantitative similarity measures are based
on terms which are tangible and can be easy for mathe-
matical interpretation, such as correlation or metric dis-
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tance. From such calculation perspective the central role
is played by the SOS. The knowledge of the second-order
statistics completely defines the parameters of the nor-
mal distribution which provides full statistical informa-
tion about the phenomenon. In conjunction with the role
of the normal distribution in linear models with station-
ary signals we get an elegant mathematical instrument
that dominates in data analysis in recent years. How-
ever, these successes are largely related to the charac-
teristics of useful technical and natural signals, which in
terms of a SOS paradigm significantly differ from the
characteristics of noise signals [2, 3]. In the case of eco-
nomics and finance, the situation is quite different. Typi-
cal financial signals such as stock prices are nonstationary
and their rate of return has often characteristics close to
white noise [4, 5]. In both cases the use of correlation
methods to identify, distinguish or compare both of the
instruments as well as random noise separation are sig-
nificantly impeded. Additionally, even very similar sig-
nals in human sense can be independent (dissimilar) in
a SOS sense. But similarity, assessing by covariance and
variance, can be motivation for our proposition. Let us
note that if we calculate similarity as a covariance value,
it means that in epistemological terms similarity is con-
nected with dependence, similarity:=dependence. But in
the multivariate case the total variance is expressed as a
sum of variance and covariance.

variability(A)︷ ︸︸ ︷
var(x1 + x2 + ...+ xm) =

variability(B)︷ ︸︸ ︷
m∑
i=1

var(xi) +

dependence︷ ︸︸ ︷
2

m∑
i=1,j=1,i6=j

cov(xi, xj) . (1)

This means that the concepts of variability and de-
pendence are related and for (1) it can be written as
variabilityA−variabilityB

∗
≈† dependence. The final con-

clusion leads to a relation where similarity
∗
≈ variability.

Such epistemological terms properties are used in our ap-
proach. But to avoid direct connections variance with
its assumptions, methodology and standard interpreta-
tions, smoothness signal characteristics are explored. Of
course, smoothness and variability by variable in many
situations explore similar characteristics of signals. In
practice its meaning and interpretation depends on the
adopted definition and applied quantitative measures.

3. Assessment of the similarity the first step
— elementary functions and variability

We start our similarity assessment approach by con-
structing smoothness characteristics that could be the
basis function for the general scheme. Our aim is to cre-
ate a characteristic which is directly associated with the

† ∗
≈ means described or defined.

nature of financial processes. For this purpose, we ex-
plore the ideas of the divergence functions [6–8]. Diver-
gence D(y‖z) is a function, defined on non-negative vari-
ables z and y, that satisfies D(y‖z) ≥ 0 and D(y‖z) = 0
only if y = z. Divergence does not need to satisfy
the triangle inequality D(y‖z) ≤ D(y‖x) + D(x‖z) and
the condition of symmetry does not have to be met for
it, which means that divergence is usually asymmetric
D(y‖x) 6= D(x‖y). Divergences are interpreted as a
measure of differentiation, quasidistances or differences.
Due to its nonnegativity, the following assumptions can
be addressed for directly exploring stock prices. For
measuring the smoothness between the sequence y(t)
and y(t − k) we define the autodivergence function as
Dk(y) = D(y(t)‖y(t − k)). Such formulated autodiver-
gence function has the same properties like standard di-
vergence function but it is addressed for single signal. In
further considerations we focus on the Fermi–Dirac di-
vergence and Bose–Einstein divergence described in the
modified form as:

a) Fermi–Dirac autodivergence

Dk
FD(y) =

∑
t

[
y(t) ln

y(t)

y(t− k)

+(1− y(t)) ln 1− y(t)
1− y(t− k)

]
, (2)

for yi, zi ∈ [0, 1]; b) Bose–Einstein autodivergence

Dα,k
BE (y) =

∑
t

yt ln
(1 + α)y(t)

y(t) + αy(t− k)

+αy(t− k) ln (1 + α)y(t− k)
y(t) + αy(t− k)

. (3)

Now, we introduce a new divergence which explores fun-
damental financial characteristics such as normal and log-
arithmic rate of returns. We define the measure calcu-
lated as a sum of absolute values of normal and scaled
logarithmic returns as

Dk
SR(y) =

∑
t

∣∣∣y(t)− y(t− k) + 0.5(y(t)

+y(t− k)) ln y(t)

y(t− k)

∣∣∣. (4)

The scaling operation with 0.5[y(t) + y(t − 1)] is per-
formed for consistency of different types of returns. The
formulae (4) can be interpreted as an effect of the point-
to-point shifts in the phase space. We can see an inter-
esting connection of DSR divergence with DFD and DBE

divergences. For α ∈ (0, 1) in Dα
BE we can make approx-

imation ln y ≈ y − 1 to obtain Dα
BE(y) =

∑
i α(y(t) −

y(t− k))2+RB =
∑
i fBE(y(t), y(t− k))+RB where RB

means residuals associated with approximation precision.
After an analogical approximation for DFD we obtain
DFD(y) =

∑
t(2y(t)

2 − 2y(t)y(t− 1) + y(t− 1)− y(t)) +
RF =

∑
t fFD(y(t), y(t − k)) + RF . Leaving approxima-

tion residuals for α ≈ 1 we have DSR ≈
∑
t |fBE − fFD|

which allows us to intemperate of (4) in a deep and el-
egant statistical way [9]. Dependences presented above
describe some basis characteristics of signals, in our case
interpreted in terms of smoothness. Currently, we pro-
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pose a concept of a multi-way comparison of signals using
such characteristics. The starting point for our consider-
ations is the case of Gaussian signals, which are similar
not only from an analytical point of view but also taking
into account the human perception. The crucial prop-
erty of such signals is that their sum is also a Gaussian
signal. Consequently, the average smoothness of a single
Gaussian signal is equal to the smoothness of the sum of
those signals. Moreover, those dependences do not de-
pend on neither the delay parameter k nor the sequence
of the arguments. Taking into account the above prop-
erties we may now define the measure of the similarity
between signals as:

Φ(y1, y2) = a
D(y1 + y2)

D(y1) +D(y2)
, (5)

where D(y) is chosen as smoothness measure and a is
a scaling factor. Such similarity measure is associated
with some reference similarity pattern given by Gaussian
signals. It can be interpreted in terms of the signal non-
gaussianity. Of course, just like other similarity criteria,
it is in some sense an arbitrary assumed convention “what
similarity mean”. Formula (5) allows us to determine the
mutual relationship (similarity) between the two signals
based on individual characteristics of smoothness. In the
multivariate case based on (5) we can create a similarity
matrix form

Φ = Φ(yn, ym)mn. (6)
Starting from the basic idea of assessing the similarity-
based formula (6), we can define further relations al-
lowing for the analysis of the overall similarity of many
variables, the similarities between variable and groups
of variables or similarity between different groups. We
present several examples for different cases.

a) The mutual similarity of three single signals in our
method is measured as

Φ[1,2,3](y1, y2, y3) = a
D(y1 + y2 + y3)

D(y1) +D(y2) +D(y3)
. (7)

b) Analysis of the similarity of the group of variables
Φ[1,2,3,4,5]:[1,2],[3,4,5](y1, y2, ..., y5) =

a
D(y1 + y2 + ...+ y5)

D(y1 + y2) +D(y3 + y4 + y5)
. (8)

The further extension of system similarity analysis is to
introduce general dividing signals relations, in other word
analysis of the impact of the group of variables division
(or all variables) into sub-groups. For example

Φ[1,2,3,4,5]:[1],[2,3,4,5](y1, y2, ..., y5) =

a
D(y1) +D(y2 + y3 + y4 + y5)

D(y1 + y2) +D(y3 + y4 + y5)
. (9)

Selecting the proper characteristics should be related
to the objective of the analysis. If we are interested in the
analysis of the interrelationships the views from point (7)
seem to be appropriate. If we analyze the variation of the
variable part (or groups) relative to the other variables,
items (8) and (9) are the right ones.

4. Practical experiment

In this paragraph, we present the aforementioned
above conception idea in practical tests. We start with
the main question which is aimed at looking for a good
and “intuitive” quantitative measure of similarity.

Fig. 1. Signals tested for similarity problem.

Figure 1 presents six signals which are independent
(and thus decorrelated) with individual unity variances,
and therefore we have no information from SOS analysis.
Moreover, it can be seen that the p-norm distance cal-
culated as ‖x‖p = (

∑m
i=1 |xi|p)1/p, given in Table I, does

not correspond to the visual evaluation.
The signal comparing of the signals via the smooth-

ness measure by divergences gives preliminary informa-
tion according to the difference between those character-
istics. The smoothest signals are y5 and y6, whereas the
least smooth signals are noise signals: y1 and y3. The
differences between various autodivergence measures are
presented in Table II.

TABLE I

The distances between the signals measured with
p-norm, for p = 2.

×10−4 y1 y2 y3 y4 y5 y6

y1 0 483 411 452 452 452
y2 483 0 292 348 348 347
y3 411 292 0 239 239 238
y4 452 348 239 0 304 301
y5 452 348 239 304 0 304
y6 452 347 238 301 304 0

TABLE II

The signal smoothness.

×10−4 y1 y2 y3 y4 y5 y6

D0.5;1
BE 306 124 422 35 4 16

D1
FD 9637 553 2987 122 19 297

D1
SR 590 236 1832 275 113 181
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Fig. 2. Real financial time series.

On the other hand, the similarity measure represented
by matrix Φ, indicates the biggest similarity between sig-
nals: y1 and y3, y4 and y5, y2 and y4. It is presented in
Table III. Signal y6 is different from the others. It is
crucial that noise signals are significantly different from
deterministic signals.

In this case, our measure of similarity of benchmarked
signals is compatible with our intuition. This basic test is
an important step before assessing the similarity of much
more complicated financial time series.

Another experiment was done using real financial time
series of indexes mWIG40, WIG20 and stocks from the
Warsaw Stock Exchange: Mostostal Warszawa (MSW),
Mostostal Zabrze (MSZ) and Kety (KTY). The data
is presented in Fig. 2. We are interested in verifying
whether or not our method gives the same results as the
“human insight”.

TABLE III

The signal similarity measured via matrix Φ for DSR.

y1 y2 y3 y4 y5 y6

y1 1 1.4495 0.9526 1.4726 1.437 1,2561
y2 1.4495 1 1.43 0.8958 0.7972 0.8004
y3 0.9526 1.43 1 1.3267 1.4191 1.3436
y4 1.4726 0.8958 1.3267 1 1.108 0.4794
y5 1.437 0.7972 1.4191 1.108 1 0.6553
y6 1.2561 0.8004 1.3436 0.4794 0.6553 1

TABLE IV

The real financial signal similarity measured via
matrix Φ for DSR.

y1 y2 y3 y4 y5

y1 1.0002 0.8113 0.8505 0.8755 0.7079
y2 0.8113 1.0003 1.1811 1.2333 1.0287
y3 0.8505 1.1811 1.0000 0.9047 1.2717
y4 0.8755 1.2333 0.9047 1.0003 1.2407
y5 0.7079 1.0287 1.2717 1.2407 1.0005

TABLE V

The real financial signal smoothness measured in
particular measures.

×10−4 y1 y2 y3 y4 y5

D0.5;1
BE 3.3 13.3 7.1 5.7 12.4

D1
FD 24.7 116.3 21.4 34.0 108.0

D1
SR 572.0 1200.1 775.8 733.0 1067.4

Table IV presents matrix Φ for real financial time se-
ries. The most similar are y3 (MSW) and y4 (MSZ). It
is consistent with the human insight as well as with the
market characteristics as since both stocks come from
the same construction branch — construction. Gener-
ally, all above financial time series are similar, which
might be caused by the fact that the data comes from
the same time period. That time was characterized by
strong growth of the whole market and after that most
stocks decreased. From a quantitative point of view, it
means a strong correlation of most financial instruments.

The outcomes coming resulting from matrix Φ are con-
sistent with the direct smoothness analysis presented in
Table V.

We can observe the similar smoothness of stocks from
the construction branch. Such observations can give us
direct information for the selection of instruments in the
APT theory or can become a basis for the construction
of the AT trading system.

5. Conclusions

Our method allows to assess the similarity between the
individual signals as well as their groups. Such flexible
approach gives results, which are close to human percep-
tion which we show on benchmark signals. We can see
that our method can identify similar signals in case, when
standard correlation methods can fail. After choosing of
Φ function type, the similarity measure has close analyt-
ical form and allows the direct calculation without any
learning processes (optimization) on specific prototypes,
which is typical for methods of artificial intelligence. The
Φ function create a general assessment scheme, where dif-
ferent basis function can be used. We introduce a new
divergence/autodivergence function motivated by typi-
cal financial difference calculations. Such function can
be connected with the Fermi–Dirac and Bose–Einstein
divergences, which allows for deep theoretical interpreta-
tions. Practical experiments with real market data con-
firm validity of our approach. In our opinion this method
can be straightly used in APT theory for instruments se-
lection, which is our task for further research as well as
testing the full system with others basis measures.
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