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This paper presents the quantitative characteristics of correlations (and cross-correlations) of plant main eco-
factors i.e. the ground and over-ground temperature, the wind speed, and the humidity. The study is based upon
hourly data statistical observations collected in the region of Lublin, in Poland for the period 2001.05.07–2009.04.10.
This paper indicates that plant growth conditions constitute an emergent response to the above direct eco-factors.
Then, the dynamics properties of each eco-factor is first analyzed alone for its multifractal structure. We apply
the multifractal detrended correlation analysis and multifractal detrended cross-correlation analysis. We show that
the widest multifractal spectrum is for over-ground temperature and the strongest power-law cross-correlations
exist between ground and over-ground temperature. Next, an impulse response analysis is carried out to measure
dynamical inter causalities within all the considered variables. As far as cross-impact between different eco-variables
is concerned, one observes that the wind speed, the ground temperature and the air humidity dynamics are the
most influenced, in terms of memory length time, by external temperature.
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1. Multifractal analysis

1.1. Methodology

In recent years investigation of complex systems
with regard to their fractal properties has become
one of the elementary methods of such systems anal-
ysis [1]. Multifractal structures were identified in sys-
tems from various areas such as physics [2–5], biol-
ogy [6–8], chemistry [9, 10], economics [11–13] and even
music [14–19]. One of the most popular methods of
the multifractal analysis is multifractal detrended cor-
relation (MFDFA) [20–22] and cross-correlation analy-
sis (MFCCA) [23, 24]. In this paper, we systematically
study the multifractal characteristics of meteorological
data.

The MFDFA procedure was proposed by Kantelhardt
et al. in [20] and is one of the most frequently applied
algorithms of calculating the multifractal spectra. Its
popularity owes to, among other, the simplicity of its im-
plementation and the reliability of obtained results in the
case of non-stationary time series. The generalization of
the MFDFA method for two time series is MFCCA. This
procedure was proposed by Oświęcimka et al. in [23].

Let consider two time series x(i)i=1,...,N and
y(i)i=1,...,N divided into 2Ms separate boxes v of length s.
In each box v a local trend of an integrated signal is ap-
proximated by an m-th degree polynomial Q(m). Next,
according to formula, this trend is subtracted

Xv (s, i) =

i∑
j=1

x (vs+ j)−Q(m)
X,s,v (j),

Yv (s, i) =

i∑
j=1

y (vs+ j)−Q(m)
Y,s,v (j).

Variance of the detrended data is calculated inside each
segment

f2XY (s, v) =
1

s

s∑
j=1

Xv (s, i)Yv (s, i).

Finally, the q-th-order fluctuation function is expressed
by the following formulae:

F qXY (s) =
1

2Ms

2Ms−1∑
v=0

sgn
[
f2XY (s, v)

] ∣∣f2XY (s, v)
∣∣q/2,

and
FqXY (s) = sgn [F qXY (s)] |F qXY (s)|1/q .

Moreover, for q = 2 the MFCCA procedure consis-
tently transforms itself into the basic detrended cross-
correlation analysis (DCCA) [25].

A (multi-) fractal character of the cross-correlations is
related to a power-law scaling

F qXY (s) sδ(q) and FqXY (s) sλ(q),

where δ (q) , q and λ (q) is an exponent that quantita-
tively characterizes fractal properties. When λ (q) =
const we observe monofractal cross-correlation. Other-
wise, the analyzed data have a fractal nature of the cor-
relation. Of course, the estimated (multi-) fractal cross-
correlations are related to the fractal properties of the
respective signals x(i) and y(i). Therefore, it is often
used the average of the generalized Hurst exponents

hxy (q) =
hx (q) + hy (q)

2
,

where hx (q) and hy (q) refer to fractal properties of in-
dividual signals and for q = 2 correspond to the Hurst
exponent H.

(922)
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For MFDFA method, when Xv (s, i) = Yv (s, i),
FqXX (s) ≡ Fq s

h(q), where h(q) denotes the generalized
Hurst exponent. For a monofractal signal, h(q) is inde-
pendent of q and equals the Hurst exponent h(q) = H.
On the other hand, for a multifractal time series, h(q) is
decreasing function of q and the ordinary Hurst exponent
is obtained for q = 2. The multifractal spectrum can be
calculated by means of the following relation:

f (α) = q [α− h (q)] + 1,

where α denotes the strength of a singularity spectrum
and f(α) is the fractal dimension of a points set with
particular α. For a multifractal time series, the shape
of the singularity spectrum is similar to a wide inverted
parabola. The left and right wing of the parabola refers
to the positive and negative values of q, respectively.
The maximum of the spectrum is located at α(q = 0).
For a monofractal signal, f(α) aims to the one point.
The richness of the multifractal is evaluated by the width
of its spectrum

∆α = αmax − αmin.

1.2. Results

We start our study with an analysis of a time series rep-
resented by the one 1-hour meteorological data. T1 — it
is the air temperature changes at a height of 2 m, T2 — it
is the ground temperature changes. We are also consid-
ering changes of “wind speed” (W) and “humidity” (H) at
the height 2 m. Examples of the time series can be seen
in Fig. 1.

Fig. 1. Time series of meteorological data during the
period of 2001.05.07–2009.04.10. Hourly changes of:
(a) wind speed (W), (b) air temperature (T1), (c) hu-
midity (H), (d) ground temperature (T2).

In all subsequent analyses we use the normalized data,
i.e. data with a mean equal to zero and a standard devia-
tion equal to 1. In order to determine the range of q val-
ues, which we will use for the multifractal analysis, we
study cumulative probability distributions. The results
are shown in Fig. 2. It is clear that the distributions,
for all of the analyzed signals, have a power-law type
tails (x−β). The most extreme slope tails are observed

for temperature T1 and T2 (β value is respectively 6
and 3). Interestingly, β = 3 and β = 4 is a typical value
observed among others in the high frequency financial
data [11, 21, 26].

Fig. 2. Log–log plot of the cumulative distributions of
absolute normalized changes of wind speed, air temper-
ature, humidity, and ground temperature.

In order to avoid divergent moments due to fat tails
in the distribution of the fluctuations, we restrict q to
〈−4, 4〉 throughout this paper. Moreover, based on our
own experience, as optimal we use a polynomial of or-
der m = 2. In Fig. 3, we depict empirical singularity
spectra f(α) for all considered data.

Fig. 3. The empirical singularity spectra f(α) for nor-
malized changes of wind speed (©), air tempera-
ture (4), humidity (�) and ground temperature (�).

It is clear that the singularity spectra estimated for
each signals differ from each other. In all cases, we
obtained relatively broad spectra which confirm that
the analyzed meteorological time series are multifractal.
The spectrum is widest for the case of T2 and its max-
imum is shifted to the right. Such a large width for T2
testifies to the fact that fluctuations of the temperature
at a height of 2 m are much more multifractal than the
ground temperature. The Hurst exponents (located in
the vicinity of the maximum) estimated for wind speed,
T1, H indicate stronger antipersistence than for T2.

To detect possible relationship between the analyzed
meteorological data we study the multifractal cross-
correlation. We consider the following cases of cross-
correlation: W–H, T1–T2, W–T2, H–T2, W–T, H–T1.
The obtained results are shown in Fig. 4.
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Fig. 4. The multifractal cross-correlation scaling expo-
nents λ (q) (©) and the average generalized Hurst expo-
nents hxy (q) (�) for normalized changes of W, T1, H,
and T2.

There are shown the values obtained for λ (q) (circles)
and hxy (q) (squares). Due to the fact that in all cases
FqXY (s) is well-defined for all scales only for q approx-
imately greater than 0 (power law is fulfilled), while it
is wildly unstable for q ≤ 0 (FqXY (s) fluctuates from
positive to negative values), results for λ (q) and hxy (q)
are shown only in the range of q (approximately) greater
than 0. Of course, the spectrum of values of hxy (q) exist
for all q but here they are presented only for those q for
which the value λ (q) exists. This means that the mete-
orological signals are fractal cross-correlated, but these
correlations are restricted mainly to large fluctuations.
This means that these data are uncorrelated noise at the
level of small fluctuations. This type of effect has been
also observed for financial data [24, 27]. Analyzing all
pairs shown in Fig. 4 it can be seen that the strongest
correlations are observed between air temperature (T2)
and ground temperature (T1) −λ (q) and hxy (q) almost
overlap.

2. Eco-factors statistical interaction
and impulse response analysis

2.1. The model

The last paragraph revealed different complexity levels
through multi-fractal and cross-correlation analysis. Now
we propose a next, complementary step of the ecosystem
variable analysis. We point out the dynamic relation-
ships for each of these variables thanks to the variance
decomposition to discriminate the amount of information
each variable contributes to the other variables in their

dynamic states. Sims∗ in [28] proposed a statistical tool
called vector autoregression (VAR) to differentiate shocks
that come about as a result of other shocks and those that
occur independently through an impulse response (IR)
function analysis (IRFA) [29, 30]. More generally, an IR
refers to the reaction of any dynamic system in response
to some external change. Thus, while this technique is
largely applied in econometrics, this article extends its
application to natural sciences. Traditionally, to carry
out such an analysis, a VAR is built and followed by an
IRFA through a variance decomposition.

Following [31–34] a discrete VAR model can be written
as follows:

BXt = Γ0Dt + Γ1Xt−1 + Γ2Xt−2 + . . .

+ΓkXt−k + ξ, (1)
or in a reduced form

Xt = B−1Γ0 +B−1Γ1Xt−1 +B−1Γ2Xt−2 + . . .

+B−1ΓkXt−k +B−1ξt,

where Xt is the vector of the current observations on the
ecosystem variables of the modelXt = [X1t, X2t, . . . Xnt],
Dt — the vector of exogenous variables of the system,
Γj — the matrix of parameters related to the variables
(exogenous and endogenous lagged variables), B — the
matrix of parameters related to the endogenous present
time variables, ξt — random term.

In our case n represents the four endogenous variables
(the same as in paragraph I): T1, T2, W, and H. To al-
low for a better visualization of the IR mechanism, we
rewrite (1) in vector moving average reduced form (MA):

Xt = µ+

∞∑
i=0

ϕiξt−i, (2)

where ϕi = Ai1B
−1 and Ai = B−1Γi(i = 1, . . . , k).

The value µ stands for a vector of average values of model
variables. The time index i explains the lag degree [34]
of variable autocorrelation. The coefficients ϕi is used to
generate the impact of random shocks(impulse) on Xt

In the case of the presently analyzed model, the
reduced form can be presented as follows:

W

T1

T2

H

 =


W̄

T̄1

T̄2

H̄

 (3)

+

∞∑
i=0


ϕ11(i) ϕ12(i) ϕ13(i) ϕ14(i)

ϕ21(i) ϕ22(i) ϕ23(i) ϕ24(i)

ϕ31(i) ϕ32(i) ϕ33(i) ϕ34(i)

ϕ41(i) ϕ42(i) ϕ43(i) ϕ44(i)



ξWt−i

ξT1t−i

ξT2t−i

ξHt−i

 .
Thus, elements of ϕjk (0) stand for the direct impact

∗The 2011 Nobel Prize winner in Economics.



Quantitative Characteristics of Correlations of Meteorological Data 925

of a shock. For instance ϕ13 (0) explains the contem-
porary impact of one standard error unit change of the
temperature T2 on the current W. Likewise ϕ24 (1) esti-
mates the last period impact of H on the current temper-
ature T1. In empirical researches, it can be sometimes
interesting to estimate the total fluctuations of a vari-
able over a laps of time as a result of an external or an
autogenerated shock. For example, a 200 h cumulative
shock impact of T1 on Wt (ϕWT1(200)) can be written as

follows:
200∑
i=1

ϕ12(i).

2.2. Outputs

Figure 5 shows the IR within all eco-variables pre-
sented in Eq. (3). The figure self-contains 16 (4 × 4)
individual impact response figures. If we observe these
figures by column, the first column relates the impact of
a standard error unit of wind speed Wt impulse on each
eco-variable, the rest of columns display the same impact
respectively by T1, H, T2.

Fig. 5. The IRFA displaying the dynamic relationships
between T1, T2, W, and H variables. The vertical
axis displays the magnitude of a one standard error IR.
The horizontal axis presents the time over which the IR
signal evolves.

Each of the 16 figures presents the vertical axis and
the horizontal axis. The former displays a response mag-
nitude of the impacted variable by one unit standard er-
ror impulse from the targeting variable. The maximum
IR fluctuation scale has been set on an interval length
of [−0.05, +0.05]. Thus, for a one hundred percent unit
standard error impulse the IR may display an oscillation
between −5% and +5%.

Next, these oscillations around zero decline over a time
period (horizontal axis) arbitrarily limited to 2000 h in
this study. This scale seems sufficient enough for a com-
parison of the IR generated by the four variables. As we
can observe, figures on the diagonal describe a self-impact
of each eco-variable. Then, as shown by the same Fig. 5,

a standard error unit impulse of W on itself is relatively
more quickly amortized. H seems to show a similar dy-
namics. This suggests that the Wt or H auto-generated
dynamics are relatively less lasting on the given time
scale once compared to T1 and T2. Their impact on
these same variables (T1 and T2) is relatively limited,
too. This is not true in the case of both T1 and T2,
where memory on their own self past is much longer
lasting. Furthermore, as displayed in the second and
the forth column, the IR generated by both tempera-
tures present larger IR (at the beginning sometime larger
than 5% with respect to a 100% of initial impulse) and
more lasting impact. Seen at the considered scale, the
IR of each of both T1 and T2 seems to last several hun-
dred hours, as far as the cross-impact between the dif-
ferent eco-variables is H in comparison with the three
remaining variables. In spite of the fact we have used
the Cholecki triangular decomposition† model — thus ex-
cluding the contemporary mutual impact — we continue
to observe an asymmetrical IRs (around zero) in the case
of some eco-variables. In particular, the both temper-
atures impacts on each other display a higher level of
asymmetry, suggesting the stronger complexity of their
structures already pointed out in Sect. 1 devoted to mul-
tifractal analysis.

3. Summary and conclusions

In the present contribution, we focused our attention
on a relationship between the four eco-factor variables
(the ground and air temperature, the wind speed and
the humidity) considered individually and collectively as
a dynamic, complex system. The analysis of the prob-
ability distributions revealed relatively fat tails for all
considered time series — fattest for changes of ground
temperature.

An interesting observation done in the work is that
all meteorological data are antipersistent — maxima of
multifractal spectra are shifted to the left of α = 0.5.
Furthermore, the maximum for the ground temperature
is the widest and shifted relatively closer to 0.5. Thus,
the above results suggest that dynamics of changes of the
ground temperature is the most complex from among all
meteorological data considered herein.

Using the MFCCA method we showed that the ground
and over-ground (air) temperature are most correlated
and the correlations exist only for the large temperature
fluctuations.

Next, the outputs from the IRFA, tend to confirm the
above multifractal analysis results as shown in Fig. 5.
The ground and the air temperature seem to be very
correlated and their impact on other series is the biggest,
which confirms their (possible) complex character.

†This suggests recursive shocks among the random errors of the
model.
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