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In this paper, we consider the Potts model with competing interactions on the Cayley tree of order three.
We give the Potts model on the Cayley tree and its recursion relation. We construct the Gibbs states corresponding
to the model by using Markov random field method. We calculate the critical curve, such that there is a phase
transition for the model. We show that there are phase transition of the model for some given parameters.
We extend the results obtained by Akin and Temir (Condensed Matt. Phys. 14, 23003 (2011)).
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1. Introduction

It is well known that lattice spin system is a large class
of systems considered in statistical mechanics. Also it is
well known that the structure of the lattice plays an im-
portant role in examinations of spin systems. The Potts
model, which was introduced by Potts in 1952 as a gen-
eralization of the Ising model, has received an increasing
theoretical and experimental aspects in recent years [1].
The idea came from the representation of the Ising model
as interacting spins which can be either parallel or anti
parallel [2]. One of important advantages of models on
Bethe lattice is that no approximations have to be made
and the calculations can be carried out with high accu-
racy. Studies of such model may lead to a discovery of
more realistic systems with similar properties. The lat-
tice spin system is a large class of systems considered in
statistical mechanic [1]. The structure of the lattice also
plays an important role in examining the spin systems.
The Potts model has drawn an increased attention to its
theoretical and experimental aspects in recent years [3].
It is well known that lattice spin system is a large class of
systems considered in statistical mechanics. It is also well
known that the structure of the lattice plays an important
role in examining the spin systems. The Potts model, as
a generalization of the Ising model on Cayley tree with
competing interactions appeared in a pioneering work of
Vannimenus [4], has recently been studied extensively
(see [1, 3, 5, 6]). On the Cayley tree one can consider two
types of next-nearest-neighbors (triple neighbors): pro-
longed and one-level next-nearest-neighbors (respectively
two-level triple neighbors).

For many problems the solution on a tree is much sim-
pler than on a regular lattice and is equivalent to the
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standard Bethe-Peierls theory [2]. In the recent years,
many researchers have studied the existence of Gibbs
measures corresponding to the Ising and Potts models
on the Cayley tree.

The approach used to study Gibbs measure on Cay-
ley tree is based on the Markov random field on trees
and recurrent equations of this theory [2–5]. In [4], we
have analytically studied the recurrence equations of a
generalized (Axial Next-Nearest-Neighbor Ising) ANNNI
model on a Cayley tree and obtained some exact results:
critical temperatures and curves, number of phases, par-
tition function.

In this paper, we consider the Potts model with three
competing interactions and nonzero external field on the
Bethe lattice of order three. We construct the Gibbs
states corresponding to the model by means of Markov
random field method. We calculate the critical curve such
that there is a phase transition for the model. We extend
the results obtained by Akin and Temir [1]. By using ele-
mentary calculations, we show that for some parameters
θ, θ1, θ2 and θ3, corresponding to the coupling constants
given in the Hamiltonian, there are phase transitions.

2. The model and recursive equations
for partition function

In this section, we are going to obtain recursive equa-
tions for partition function to examine Gibbs measures
of the model.

Now, let us give some definitions to construct the
model.

A Cayley tree Γk of order k ≥ 1 is an infinite tree,
i.e., a graph without cycles with exactly k + 1 edges
issuing from each vertex. Cayley tree is denoted by
Γk = (V,Λ), where V is the set of vertices of Γk, Λ is
the set of edges of Γk. Two vertices x and y, x, y ∈ V are
called nearest-neighbors if there exists an edge l ∈ Λ con-
necting them, which is denoted by l =< x, y >. The dis-
tance d(x, y), x, y ∈ V, on the Cayley tree Γk, is the
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number of edges in the shortest path from x to y. For a
fixed vertex x0 ∈ V we set Wn = {x ∈ V |d(x, x0) = n},
Vn = {x ∈ V |d(x, x0) ≤ n} and Ln denotes the set of
edges in Vn. The fixed vertex x0 is called the zero-th
level and the vertices in Wn are called the n-th level.
For the sake of simplicity we put |x| = d(x, x0), x ∈ V .
Two vertices x, y ∈ V are called one level next nearest
neighbors if d(x, y) = 2. The next nearest neighbor ver-
tices x and y are called one level next-nearest-neighbors
if |x| 6= |y|, (> x, y <).

The (formal) Hamiltonian of Potts model is

H (σ) = −J
∑
〈x,y〉

δσ(x)σ(y) − J1

∑
〉x,y〈

δσ(x)σ(y)

−J2

∑
〈x,y,z〉

δσ(x)σ(y)σ(z) − h
∑
x∈V

δ1σ(x), (1)

where the first sum ranges over all nearest neighbors,
the second sum ranges over all the second neighbors, the
third sum ranges over all triples of neighbors.

We assume the following Kronecker’s Delta function
for the triple neighbors

δσ(x)σ(y)σ(z) =


1, σ(x) = σ(y) = σ(z),

1/2, σ(x) = σ(y) 6= σ(z)

or σ(x) 6= σ(y) = σ(z),

0, otherwise,

(2)

where x, y ∈Wn and y ∈Wn−1 for all n and we can also
express (2) as δσ(x)σ(y)σ(z) = 1

2

(
δσ(x)σ(y) + δσ(y)σ(z)

)
.

The spin variables σ(x) have their values on a set
Φ = {1, 2, ..., q}, q > 2 (we consider q = 3), then also
J, J1, J2 ∈ R are the coupling constants and h is the ex-
ternal field. The exact solutions of the Potts model with
J1 = 0 and h = 0 has been studied [2]. In our model,
we have chosen that all parameters J, J1, J2 and h are
nonzero.

Let Λ be a finite subset of V . We will express the re-
striction of σ to Λ with σ(Λ) and σ̄(V/Λ) will be a fixed
boundary condition of spin variables. The full energy
of σ(Λ) with determined configuration of σ̄(V/Λ) is ob-
tained by the following Hamiltonian:

HΛ (σ (Λ) |σ̄ (V/Λ)) =−J
∑
〈x, y〉

x, y ∈ Λ

δσ(x)σ(y) − J
∑
〈x, y〉

x ∈ Λ, y /∈ Λ

δσ(x)σ(y)

−J1

∑
〉x, y〈

x, y ∈ Λ

δσ(x)σ(y)−J1

∑
〉x, y〈

x ∈ Λ, y /∈ Λ

δσ(x)σ(y)−J2

∑
〈x, y, z〉

x, z, y ∈ Λ

δσ(x)σ(y)σ(z)

−J2

∑
〈x, y, z〉

x, z /∈ Λ, y ∈ Λ

δσ(x)σ(y)σ(z) − h
∑
x∈Λ

δ1σ(x), (3)

where δσ(x)σ(y) is the Kronecker’s Delta function. After-
ward the partition function ZΛ (σ̄ (V/Λ)), which deter-
mines the boundary condition σ̄ (V/Λ) in part of Λ is
defined as follows

ZΛ (σ̄ (V/Λ)) =
∑

σ(Λ)∈Ω(Λ)

exp [−βHΛ (σ (Λ) |σ̄ (V/Λ))], (4)

where β = 1/kT is the inverse temperature and Ω (Λ) is
the set of all possibility of Λ. We introduce new nota-
tions σn and Z(n) in place of configurations σ(Vn) and
the partition functions ZVn respectively, inside the vol-
ume Vn [2]. The Gibbs measure is a probability measure,
frequently seen in many problems of probability theory
and statistical mechanics [7]. The Gibbs measure for a
given configuration σn is defined by

µ (σΛ) = (ZΛ (σ))
−1

exp [−βH (σΛ)] ,

where ZΛ(σ) =
∑

σΛ∈ΩV

exp [−βH(σΛ)] is the partition

function. We can normally define the concept of the
Gibbs measure (phase) of the Potts model with three
types of interactions on the Cayley tree of order 3.
Now, let us express the partition function Z(n) with a
summation of the partial partition functions Z(n)

i , as

Z(n) =
q∑
i=1

Z
(n)
i , where

Z
(n)
i =

∑
σn∈Ω(Vn):σ(x0)=i

exp [−βHVn (σn|σ(V/Vn))]. (5)

The partition function is recurrently obtained, by begin-
ning from the boundary conditions and continuing to the
inner points of the Cayley tree of order three. The partial
partition function of a branch on n generations, where the
innermost site is in state i, is denoted by Z(n)

i . Given a
fixed point (root of tree) x0 and x1, x2, x3 ∈W1, let us de-
note S(x0) =

{
x1, x2, x3

}
, σ(x0) = i, σ(x1) = j, σ(x2) =

m, σ(x3) = k. Now we can define the partial parti-
tion functions of the following generations, for a given n,

by Z(n+1)
i =

3∑
j,m,k=1

exp[β(J(δij + δik + δim) + J1(δjk +

δjm+ δkm) +J2(δjim+ δkim+ δjik) +hδ1i)]Z
(n)
j Z

(n)
m Z

(n)
k ,

where i = 1, 2, 3. Let θ = exp [βJ ], θ1 = exp [βJ1],
θ2 = exp [βJ2], θ3 = exp [βh] for brevity.

Then the partial partition function can be obtained
using (3) and (4) as follows:

Z
(n+1)
1 = θ3

(
θ3

1

(
θ3θ3

2(Z
(n)
1 )3 + (Z

(n)
2 )3 + (Z

(n)
3 )3

)
+6θθ2

(
Z

(n)
1 Z

(n)
2 Z

(n)
3

)
+ 3θ2θ1θ

2
2(Z

(n)
1 )2

×
(
Z

(n)
2 + Z

(n)
3

)
+ 3θθ1θ2Z

(n)
1

(
(Z

(n)
2 )2 + (Z

(n)
3 )2

)
+3θ1Z

(n)
2 Z

(n)
3

(
Z

(n)
2 + Z

(n)
3

))
,

Z
(n+1)
2 =

(
θ3

1

(
(Z

(n)
1 )3 + θ3θ3

2(Z
(n)
2 )3 + (Z

(n)
3 )3

)
+6θθ2

(
Z

(n)
1 Z

(n)
2 Z

(n)
3

)
+ 3θθ1θ2Z

(n)
2

×
(

(Z
(n)
1 )2 + (Z

(n)
3 )2

)
+ 3θ2θ1θ

2
2(Z

(n)
2 )2

×
(
Z

(n)
1 + Z

(n)
3

)
+ 3θ1Z

(n)
1 Z

(n)
3

(
Z

(n)
1 + Z

(n)
3

))
,

Z
(n+1)
3 =

(
θ3

1

(
(Z

(n)
1 )3 + (Z

(n)
2 )3 + θ3θ3

2(Z
(n)
3 )3

)
+6θθ2

(
Z

(n)
1 Z

(n)
2 Z

(n)
3

)
+ 3θθ1θ2Z

(n)
3
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×
(

(Z
(n)
1 )2 + (Z

(n)
2 )2

)
+ 3θ2θ1θ

2
2(Z

(n)
3 )2

×
(
Z

(n)
1 + Z

(n)
2

)
+ 3θ1Z

(n)
1 Z

(n)
2

(
Z

(n)
1 + Z

(n)
2

))
.

We have the following recurrent system of equations,
after substitution un+1 = Z

(n+1)
2 /Z

(n+1)
1 and vn+1 =

Z
(n+1)
3 /Z

(n+1)
1

θ3un+1 =
θ3

1(1 + θ3θ3
2u

3
n + v3

n) + 6θθ2unvn + 3θθ1θ2un(1 + v2
n) + 3θ1vn(1 + vn) + 3θ2θ1θ

2
2u

2
n(1 + vn)

θ3
1(θ3θ3

2 + u3
n + v3

n) + 6θθ2unvn + 3θ2θ1θ2
2(un + vn) + 3θθ1θ2(u2

n + v2
n) + 3θ1unvn(vn + un)

,

θ3vn+1 =
θ3

1(1 + u3
n + θ3θ3

2v
3
n) + 6θθ2unvn + 3θ1un(1 + un) + 3θθ1θ2vn(1 + u2

n) + 3θ2θ1θ
2
2v

2
n(1 + un)

θ3
1(θ3θ3

2 + u3
n + v3

n) + 6θθ2unvn + 3θ2θ1θ2
2(un + vn) + 3θθ1θ2(u2

n + v2
n) + 3θ1unvn(un + vn)

. (6)

We describe a function F = (F1, F2) : R2 → R2 with
un+1 = F1(un, vn) and vn+1 = F2(un, vn). We are go-
ing to try to get solutions, called fixed points, of the
function w = F (w), where w = (un, vn). Existence
of the translation-invariant Gibbs measures (phases) of
the Potts model produced by the Hamiltonian (1) is
dependent on the number of the roots of the function
w = F (w). The recursive equations (6) can be written

as wn = F (wn−1), n > 0. In the theory of dynamical sys-
tems, wn is called trajectory of the initial point w1 under
the action of the mapping F . So, asymptotic behavior of
Z(n) for n→∞ can be determined by value of limn wn.
After replacement u = lim

n→∞
un and v = lim

n→∞
vn, we get

the following equations:

θ3u =
θ3

1 + θ3θ3
1θ

3
2u

3 + θ3
1v

3 + 6θθ2uv + 3θθ1θ2u+ 3θ1v + 3θ2θ1θ
2
2u

2 + 3θ2θ1θ
2
2u

2v + 3θ1v
2 + 3θθ1θ2uv

2

θ3θ3
1θ

3
2 + θ3

1u
3 + θ3

1v
3 + 6θθ2uv + 3θ2θ1θ2

2u+ 3θ2θ1θ2
2v + 3θθ1θ2u2 + 3θ1u2v + 3θθ1θ2v2 + 3θ1uv2

,

θ3v =
θ3

1 + θ3
1u

3 + θ3θ3
1θ

3
2v

3 + 6θθ2uv + 3θ1u+ 3θθ1θ2v + 3θ1u
2 + 3θθ1θ2u

2v + 3θ2θ1θ
2
2v

2 + 3θ2θ1θ
2
2uv

2

θ3θ3
1θ

3
2 + θ3

1u
3 + θ3

1v
3 + 6θθ2uv + 3θ2θ1θ2

2u+ 3θ2θ1θ2
2v + 3θθ1θ2u2 + 3θ1u2v + 3θθ1θ2v2 + 3θ1uv2

. (7)

After some simplification, equations (7) can be written as follows:

θ3u =
θ3

1(θ3θ3
2u

3 + (v3 + 1)) + 3θθ2(2uv + θ1u(v2 + 1)) + (3θ1v + 3θ2θ1θ
2
2u

2)(v + 1)

θ3
1(u3 + v3) + 3θθ2(θ1(u2 + v2) + 2uv) + 3θ1(θ2θ2

2 + uv)(u+ v) + θ3θ3
1θ

3
2

θ3v =
θ3

1((1 + u3) + θ3θ3
2v

3) + 6θθ2uv + 3θθ1θ2v(1 + u2) + 3θ1(1 + u)(u+ θ2θ2
2v

2)

θ3
1(u3 + u3) + 3θθ1θ2(u2 + u2) + 6θθ2uv + 3θ1(u+ v)(θ2θ2

2 + uv) + θ3θ3
1θ

3
2

.

3. Translation-invariant Gibbs measures

If there exists more than one Gibbs state for a given po-
tential V , we can say that the phase transition occurs [2].
We can mention about a phase transition of a nonlinear

dynamical system without a unique Gibbs state. In this
part of paper we will solve the equation system (7) to
find the phase transition. Assuming that u = v for (7)
we then obtain the following equation

u =
θ1(θ2

1 + θ3θ2
1θ

3
2 + 3θθ2 + 3θ2θ2

2)u3 + 3(2θθ2 + θ1 + θ2θ1θ
2
2)u2 + (3θθ1θ2 + 3θ)u+ θ3

1

θ3 ((2θ3
1 + 6θ1)u3 + (6θθ2 + 6θθ1θ2)u2 + (6θ2θ1θ2

2)u+ θ3θ3
1θ

3
2)

. (8)

We can show the last Eq. (8) as u = f(u). The solu-
tions of the system (8) describe the translation-invariant
Gibbs measures corresponding to model (1). The number
of the solutions of the Eq. (8) depends on the parameters
β = 1

kT , θ, θ1, θ2, θ3 and h. The phase transition usually
occurs at low temperature. It is possible to find an ex-
act value of T ∗ such that a phase transition occurs for all

T < T ∗ where T ∗ is called a critical value of temperature.
After some notations and simple calculations in Eq. 8,

we can get the following fourth order equation,
g(u) = Du4 + (E −A)u3 + (F −B)u2

+(G− C)u+H = 0, (9)
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where
A = θ3

1(1+θ3θ3
29+3θθ1θ2(1+θθ2), E = 6θθ2θ3(1+θ1),

B = 3θθ2(2+θθ1θ2)+3θ1, F = 6θ2θ1θ
2
2θ3,

C = 3θ1(θθ2+1), G = θ3θ3
1θ

3
2,

D = 2θ3
1θ3+6θ1θ3, H = θ3

1.

Now we will analyze how many roots (positive, negative
or complex) has Eq. (9). Then we will look for the condi-
tions for which Eq. (9) has the maximum possible number
of positive roots by using the Descartes’ Rule of Signs.
Thus, we consider all probabilities of the other coeffi-
cient’s sign to determine the maximum number of posi-
tive real roots (or zeroes), which show the existence of the
Gibbs measures, (u-intercepts) for the polynomial (9).
The following table summarizes signs of coefficients of the
polynomial to determine conditions at which the equa-
tion (9) has the maximum possible number of positive
roots.

TABLE I

Number of all possible roots (positive, negative and com-
plex) of the Eq. (9).

E–A F–B G–C Positive Negative Complex
+ + + 0 4, 2, 0 0, 2, 4
+ + – 2 2, 0 0, 2
+ – + 2 2, 0 0, 2
+ – – 2 2, 0 0, 2
– + + 2 2, 0 0, 2
– + – 4 0 0
– – + 2 2, 0 0, 2
– – – 2 0 2

According to Table I, Eq. (9) has the maximum number
of possible positive roots (4) when (E−A) < 0, (F−B) >
0 and (G−C) < 0 and the minimum number of positive
roots (0) when (E−A) > 0, (F−B) > 0 and (G−C) > 0
(see Table I). Due to some parameters such as θ, θ1, θ2

and θ3 the number of positive roots of the Eq. (8) changes
normally. So we manipulate the equation to see where
the Gibbs states occur.

Now we will approximately demonstrate some positive
roots of the Eq. (8) on a graph by using Mathematica
software. Such equations can be solved using known for-
mulas, since we will have some complicated formulas for
the coefficients and the solutions; we do not present the
solution here. But, we have manipulated the Eq. (8) via
Mathematica.

As shown in Fig. 1a the phase transition does not exist
for θ ∼= 0.001, θ1

∼= 0.00001, θ2
∼= 0.001 and θ3

∼= 0.005
because we have only one positive root. When we take
the parameters as θ ∼= 1.18, θ1

∼= 0.86, θ2
∼= 17.1 and θ3

∼=
13.57 we get exactly two positive roots, shown in Fig. 1c.
When we look at Fig. 1b, we have finally three roots
where the parameters θ ∼= 0.86, θ1

∼= 0.94, θ2
∼= 20.6 and

θ3
∼= 10.37. Thus model (1) has a phase transition for

cases (b) and (c) [2].

Fig. 1. Plot of the function f(u) (8) for some values of
the parameters θ, θ1, θ2 and θ3.

4. Conclusions

In this paper we have obtained the exact solution of
a phase transition problem by means of Gibbs state of
the Potts model on a Bethe lattice of order three with
three coupling constants J , J1, J2 and the external mag-
netic field constant h. Here we have extended studies
from [2] by reproducing branch of Cayley tree from 2
to 3. Hence, we have also seen the influence of branch
number of the Bethe lattice (Γk, k = 3) on the existence
of the phase transitions. In the future work, we are go-
ing to search whether the Gibbs states and phase transi-
tions occur when different models are considered, such as
mixed type Potts λ-model on Cayley tree of order three
or more.
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