5th International Science Congress & Exhibition APMAS2015, Lykia, Oludeniz, April 16–19, 2015

Gamma Attenuation Properties of Some Aluminum Alloys

S. YILDIRIM^{*}, A.B. TUGRUL, B. BUYUK AND E. DEMIR

Istanbul Technical University, Energy Institute, Nuclear Researches Division, ITU Ayazaga Campus,

34469, Sariyer, Istanbul, Turkey

In the present work, several commonly used aluminum alloys were investigated for their protective properties against gamma radiation. The gamma transmission technique was used to study the gamma attenuation behavior of the alloys. Cs-137 (0.662 MeV) and Co-60 (1.25 MeV) gamma radioisotope sources, which have relatively medium and high gamma energy levels, were used as gamma sources. The linear and mass attenuation coefficients of the aluminum alloys were measured. The mass attenuation coefficients of the samples were compared with the theoretical values which were calculated using XCOM computer code. The difference between the experimental and theoretical values was below 5%. In addition half-value layer (HVL) values for the studied aluminum alloys were calculated using the linear attenuation coefficients. The attenuation coefficients of the different aluminum alloys were compared. The biggest HVL was observed for 1050 alloy, for both gamma isotope sources, which means the smallest gamma attenuation capability among the studied alloys. It is concluded that the alloys were applicable for the gamma radiation shielding applications.

DOI: 10.12693/APhysPolA.129.813

PACS/topics: 25.20.Dc

1. Introduction

Aluminum is one of the light engineering metals, having a strength to weight ratio superior to steel. Pure aluminum is relatively soft, ductile, and corrosion resistant and has a high electrical conductivity. It is widely used for foil and conductor cables, but alloying with other elements is necessary to provide a higher strength needed for other applications. Aluminum alloys are used in engineering structures in a wide range of the industrial sectors. Most of the aluminum reaching the marketplace is alloyed and such alloys have extensive application areas [1].

By utilizing various combinations of its advantageous properties such as strength, lightness, corrosion resistance, recyclability and formability, aluminum is being employed in an ever-increasing number of applications. Aluminum is the most strong and resistant material for every season. It is 43 times more lasting than wood, 23 times more lasting than PVC. It does not need the extra protection against ultra violet light. In an alloy aluminum can be strong and durable as much as iron and steel. On the other hand aluminum is by 1/3 lighter than these metals. The array of aluminum alloy products ranges from structural materials to thin packaging foils. Alloy systems are classified by a number system of ANSI. Aluminum alloys are also used in nuclear reactors for different purposes (e.g. it is used as the tank material for the TRIGA Mark Reactors). In this study, the behavior of aluminum alloys against gamma radiation was investigated. Several aluminum alloys were studied in the experiments.

2. Experimental procedures 2.1. Materials

In this study, six different aluminum alloys were used in experiments. The contents of the studied aluminum alloys is given in Table I [2].

TABLE I

The contents of studied aluminum alloys.

Alloys	Fe	Si	Zn	\mathbf{Cr}	Ti	Mg	Mn	Cu	Others
1050	0.4	0.25	0.07	-	0.05	0.05	0.05	0.05	-
3003	0.7	0.6	0.1	-	-	_	1.0 - 1.15	0.05 - 0.2	0.15
5005	0.7	0.3	0.25	0.10	-	0.50 - 1.1	0.2	0.2	0.15
6063	0.35	0.20 - 0.6	0.1	0.1	0.1	0.45 - 0.9	0.10	0.1	0.15
7072	0.7	Fe+Si	0.8 - 1.3	-	0.15	-	0.10	0.10	0.05
8006	1.2 - 2.0	0.40	0.10	-	-	0.10	0.3 - 1.0	0.30	0.05

2.2. Gamma sources

In the experiments two main gamma radioisotopes were used as gamma source. One of them is Cs-137, which has a single gamma energy peak, and the other is Co-60, which has two energy peaks above the energy of 1 MeV. Properties of the gamma sources are given in Table II.

TABLE II

Properties of the studied gamma radioisotope sources [3].

-				
Padioisatana	Energy	Half-life	Activity	
Radioisotope	[MeV]	[years]	$[\mu Ci]$	
Cs-137	0.662	30.1	8.89	
Co-60	1.17; 1.33	5.27	8.32	

2.3. Gamma transmission technique

Gamma transmission technique is a radiogauging technique that is also a non-destructive method. It is used to examine the behavior of the materials against the radiation. The gamma source and the detector are placed

^{*}corresponding author; e-mail:

selahattin06_yildirim@hotmail.com

on the opposite sides of the materials, on the same axis. Gamma radiation comes from the gamma source, penetrates the object and the detector detects the transmitted gamma rays [4–10]. The principle of the gamma transmission technique is shown in Fig. 1.

Fig. 1. Schematic view of the experimental set.

Lambert-Beer's equation is used for gamma transmission technique:

$$I = I_0 e^{-\mu x}.$$
 (1)

Here I is beam intensity after transmission, I_0 is the incoming beam intensity, μ is the linear attenuation coefficient and, x represents material thickness.

Mass attenuation coefficient can be found by the following formula:

$$\mu_m = \frac{\mu}{\rho},\tag{2}$$

where, μ_m is the mass attenuation coefficient of the material and ρ is the density of the material.

In the experiments, gamma rays were detected by Canberra Model (802-2X2) NaI scintillation detector and digiBASE model PMT with integrated bias supply, preamplifier and digital multichannel analyser, which was supplied with MAESTRO-32 MCA Emulation software combined system. In experimental geometry lead blocks were used for radiation shielding and collimating of gamma rays, so scattering effect was minimized by using a 7 mm diameter harrow hole.

At first the background radiation and after that the initial gamma intensity without any material (I_0) were measured. Gamma intensities (I) were then measured for each material at different thicknesses. Net intensity counts were calculated by reducing the background. Each measurement was repeated minimum three times using the accumulation time of 300 s. Relative intensities (I/I_0) were calculated at different thicknesses. After that, the graphs which include relative intensity as a function of material thickness were drawn. The linear attenuation coefficients (μ) were calculated from the graphs by using Origin 8 computer program.

3. Results and discussion

The behavior of the aluminum alloys against the gamma radiation sources was studied experimentally. The experimental studies consist of two steps. In the first step, the transmission of gamma rays was measured with Cs-137 gamma source. In the second step, the experiments were repeated with the Co-60 gamma radioisotope source. The experimental results are given in Table III. Figures 2a and 2b show relative intensity as a function

of material thickness for six different aluminum alloys against Cs-137 and Co-60 gamma radioisotope sources, respectively. The graphs of relative intensity as function of material thickness were drawn using the values given in Table III.

TABLE III

Experimental results for the different aluminum alloys.

Aluminum	Thickness	Average	Standart	Relative	
alloy	[cm]	count	deviation	count	
	0	7943	282	1.000	
	0.0959	7862	26	0.990	
1050	0.1917	7748	23	0.975	
1050	0.2872	7588	62	0.955	
	0.3832	7315	74	0.921	
	0.4792	7214	109	0.908	
	0	8174	102	1.000	
	0.1949	7959	133	0.974	
2002	0.3907	7689	73	0.941	
3003	0.5856	7270	57	0.889	
	0.7800	7009	86	0.857	
	0.9750	6658	9	0.815	
	0	8075	201	1.000	
	0.1197	8010	62	0.992	
FOOF	0.2382	7765	56	0.962	
5005	0.3575	7537	40	0.933	
	0.4765	7309	176	0.905	
	0.5958	7149	135	0.885	
	0	8103	62	1.000	
	0.2085	7832	40	0.967	
6062	0.4174	7514	52	0.927	
0005	0.6289	7150	3	0.882	
	0.8374	6824	100	0.842	
	1.0466	6603	6	0.815	
	0	7606	50	1.000	
	0.1949	7524	70	0.989	
7079	0.3907	7073	26	0.930	
1012	0.5856	6681	39	0.878	
	0.78	6511	54	0.856	
	0.975	6253	124	0.822	
	0	7614	68	1.000	
	0.144	7349	135	0.965	
8006	0.289	7196	141	0.945	
0000	0.435	6925	123	0.909	
	0.582	6841	73	0.898	
	0.726	6597	181	0.866	

The experimental linear attenuation coefficients (μ) of the materials are shown in Table IV. The experimental mass attenuation coefficients (μ/ρ) were also calculated for the studied aluminum composites. XCOM computer code was used for calculation of theoretical mass attenuation coefficients [11]. Linear attenuation coefficient, experimental and theoretical mass attenuation coefficients and their difference in percents are given in Table IV. For all samples, the experimental and theoretical mass attenuation coefficients are acceptably close to each other.

Fig. 2. (a) Attenuation graph for six aluminum alloys against Cs-137. (b) Attenuation graph for six aluminum alloys against Co-60.

4. Conclusions

Shielding properties against gamma radiation of six different aluminum alloys were studied. As a result, the increase of the amounts of high-atomic-number elements in the alloy leads to a decrease of the linear and mass attenuation coefficient of studied aluminum alloys. The differences between theoretical and experimental results were in the range of 0.07–10.74%. Therefore the calculated and the experimental results are in agreement with each other.

References

- R. Cobden, A. Banbury, Aluminum Physical Properties, Characteristics and Alloys, Training in Aluminum Technologies, TALAT, EAA, 1994.
- [2] W. Hufnagel, Key to Aluminum Alloys, 5th ed., Astm Intl., 1998.
- G. Cevikbas, A.B. Tugrul, U. Onen, T. Boyraz, B. Buyuk, *AIP Conf. Proc.* 1653, 020029 (2015).
- [4] B. Buyuk, A.B. Tugrul, Ann. Nucl. Energy 71, 46 (2014).
- [5] B. Buyuk, A.B. Tugrul, *Radiat. Phys. Chem.* 97, 354 (2014).
- [6] B. Buyuk, A.B. Tugrul, A.C. Akarsu, A.O. Addemir, *Acta Phys. Pol. A* **121**, 135 (2012).
- [7] B. Buyuk, A.B. Tuğrul, S. Aktop, A.O. Addemir, *Acta Phys. Pol. A* **123**, 177 (2013).
- [8] B. Buyuk, A.B. Tugrul, A.O. Addemir, N. Ay, Acta Phys. Pol. A 125, 420 (2014).
- B. Buyuk, A.B. Tuğrul, Acta Phys. Pol. A 125, 423 (2014).
- [10] H. Durmaz, B. Buyuk, A.B. Tuğrul, Acta Phys. Pol. A 125, 469 (2014).
- [11] M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, K. Olsen, *XCOM: Photon Cross Section Data Base*, www.nist.gov/pml/data/xcom/index.cfm, (accessed 10.3.2015).

TABLE IV

Linear attenuation coefficients and correlation coefficients of the six different aluminum alloys.

	Linear attenuation		Mass attenuation coefficient, $\mu/\rho \ [10^{-2} \ {\rm cm}^2/{\rm g}]$						
Aluminum alloys	$\begin{bmatrix} \text{Coefficient } \mu \\ [\text{cm}^{-1}] \end{bmatrix}$			Cs-137		Co-60			
	Ca 197	87 Co-60	Experimental	Theoretical	Difference	Experimental	Theoretical	Difference	
	US-137			(XCOM)	[%]		(XCOM)	[%]	
1050	0.190	0.144	7.011	7.433	5.676	5.314	5.486	3.142	
3003	0.198	0.149	7.253	7.429	2.372	5.458	5.483	0.458	
5005	0.198	0.164	7.333	7.432	1.328	6.074	5.485	10.740	
6063	0.197	0.147	7.351	7.444	1.253	5.485	5.495	0.181	
7072	0.199	0.149	7.316	7.428	1.505	5.478	5.482	0.074	
8006	0.198	0.149	7.226	7.426	2.690	5.438	5.480	0.767	