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Time-Reversal Invariant Topological Superconductivity
in Quasi-One-Dimensional Structures
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It is shown that a time-reversal invariant topological superconductivity can be realized in a quasi-one-
dimensional structure, which is fabricated by filling the superconducting materials into the periodic channel of
dielectric matrices like zeolite and asbestos under high pressure. The topological superconducting phase sets up
in the presence of large spin-orbit interactions when s-wave intra-wire and d-wave inter-wire pairings take place.
Kramers pairs of Majorana bound states emerge at the edges of each wire. The time-reversal topological super-
conductor belongs to DIII class of symmetry with a Z2 invariant.
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1. Introduction

The recent theoretical prediction of topological in-
sulators and superconductors [1] and their experimen-
tal observation in a number of materials have attracted
great interest to this subject. The Hamiltonians for
gapped topological insulators and superconductors are
classified into ten topological symmetry classes [2, 3]
each of which is characterized by a topological invari-
ant. The time-reversal invariant (TRI) topological su-
perconductors (SC) were predicted by theoretical clas-
sification of Bogolyubov-de Gennes (BdG) Hamiltonian
which constitutes a completely distinct symmetry class
DIII. Topological SC has a bulk gap and gapless An-
dreev bound states. Due to the presence of intrinsic
particle-hole symmetry (PHS) the gappless zero-modes
in the topological superconductors constitute Majorana
fermions (MF), obeying non-Abelian braiding statistics
which is useful in implementing fault-tolerant topologi-
cal quantum computer [4]. The challenge is to find a real
material which supports the topological SC properties.

Recent works [5, 6] have proposed TRI topological su-
perconductivity (class DIII) with a Z2 invariant, which
takes a value ν = 1, in a number of systems with intrinsic
or proximity induced superconductivity of p-wave, spin-
triplet or d-wave and s±-wave spin-singlet pairings.

In this work, it is shown that the time-reversal invari-
ant topological superconducting phase can be realized in
quasi-one-dimensional (quasi-1D) wires on the plane in
the presence of s-wave intra-wire and d-wave inter-wire
pairings. Similar structures have been fabricated [7, 8]
by filling a superconducting material into the cavities or
channels of dielectric matrices like zeolite and asbestos
crystals (see, e.g. Fig. 1a) under high pressure up to
30 kbar. The regular set of channels or cavities with
diameter of 5–10 Å in zeolite and from 20–30 Å up to
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100–150 Å in asbestos [9] form a periodic lattice of differ-
ent geometry in one, two and three dimensions, e.g. like
several equidistant filaments with 5÷ 20 Å separation in
zeolite and with 150 ÷ 500 Å separation in asbestos on
a plane or quasi-1D space lattice. The critical temper-
atures Tc of such structures become higher than the Tc
of the bulk superconductors by factors of 2–5 [7]. High
stress field around the filaments may guarantee higher
value of spin-orbit interactions in the structures. An in-
crease in the critical temperature may be caused by an
additional inter-wire pairing due to polarization of the
dielectric matrix between the wires.

2. Time reversal invariant topological
superconductor

The equidistant superconducting wires, aligned along
x-axes in {x, y} plane, with intra- and inter-wire s-wave
pairings (see, Fig. 1b), in the presence of spin-orbit
interactions (SOIs) are described in the momentum
space by Hamiltonian

Ĥ =

π∫
−π

π∫
−π

dkxdky
(2π)2

ψ+
k Hψk, (1)

in the extended Nambu spinor basis ψ+
k =

(ψ+
k,↑, ψ

+
k,↓, ψ−k,↓,−ψ−k,↑). H in Eq. 1 reads as

H = ξkτz + 2(α sin kx − β̄ sin ky)τzσy

+2(β sin kx − ᾱ sin ky)τzσx + ∆(ky)τx, (2)
where, ξk = −2t‖ cos kx − 2t⊥ cos ky − µ is the energy
dispersion in a single wire, t‖, (t⊥) and µ are the longitu-
dinal (transverse) overlap integral and the Fermi energy,
α(β) and ᾱ(β̄) are the longitudinal and transverse com-
ponents of Rashba (Dresselhaus) spin-orbit constants.
The existence of s-wave intra-wire and d-wave inter-wire
order parameters ∆0 and ∆1, which are assumed here
to be real parameters, allows one to introduce the
effective order parameter ∆(ky) in momentum space,
∆(ky) = ∆0 + 2∆1 cos ky. The Pauli matrices σi and τi
in Eq. 2 act in the spin- and particle-hole spaces,
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respectively. We assume also that the structure is
strongly anisotropic and the condition t⊥ � t‖ is satis-
fied. The Fermi surface under this condition becomes
opened, consisting of two goffered lines. Note, that a
conventional Josephson coupling between the wires is
realized under t⊥ < kBTc0 � t‖, where Tc0 is the critical
temperature of the superconducting phase evaluated
within the mean field theory. The time-reversal sym-
metry and the particle-hole symmetry are protected in
topological SC. Hamiltonian H satisfies the relations
ΘH0(k) = H0(−k)Θ with TRI operator Θ = iσyK,
where K is the anti-unitary complex conjugation
operator. The particle-hole symmetry emerges from
the intrinsic structure of the BdG Hamiltonian, which
satisfies the anti-commutation relation ΞH0 = −H0Ξ
with the particle-hole operator Ξ = τyσyK, obeying
Ξ = −1. The presence of time-reversal symmetry and
particle-hole symmetry leads to a chiral symmetry
ΠH(k) = −H(−k)Π with the unitary chiral operator
Π = −iΘΞ = τyσ0.

Fig. 1. Structure of (a) a porous zeolite with periodic
channels, and (b) the corresponding model for the quasi-
1D superconducting wires on a plane.

The energy spectrum, obtained from det |E0−H0| = 0,
reads

E0 = s

√
(ξ2
k ± εs)2 + |∆eff(ky)|2. (3)

Here s = ± and εs = [(sin2 kx + sin2 ky)(α2 + β2) −
4αβ sin kx sin ky]1/2 (we take α = ᾱ and β = β̄ for sim-
plicity). ∆(ky) = ∆0 + 2∆1 cos ky changes sign at the
nodal point cos ky = ∓ ∆0

2∆1
if |∆0| < 2∆1 while mov-

ing along ky from ky = 0 to ky = π. A nontrivial
TRI superconductor with ν = 1 is realized if there is
an odd number of Fermi surfaces with a negative pair-
ing order parameter [3]. At the nodal points one gets
E0N = s[2t‖ cos kx+µ−t⊥ ∆0

2∆1
±ESN(kx, kyN )] from Eq. 3,

where δ =
√

1− ∆2
0

∆2
1
and ESN(kx, kyN ) is the value of the

SOI energy ESN at the nodal point kyN = arccos(− ∆0

2∆1
),

ESN(kx, kyN ) = [(sin2 kx+δ2)(α2 +β2)−4αβδ sin kx]1/2.
ESN(kx, kyN ) varies between the maximal Emax

SN and min-
imal Emin

SN values. The order parameter switches sign
as the nodal point is crossed. On the other hand, the
SOIs split the Fermi surfaces. The splitted Fermi sur-
faces around the nodal points lie in the energy interval of
ESN(kx, kyN ) from each other. Non-trivial TRI topolog-
ical phase with ν = 1 is realized when the maximal value

of the kinetic energy term (the first three terms in E0N )
is smaller than the minimal value of the SOIs mediated
splitting energy ESN(kx, kyN , α, β),

∣∣∣2t‖ + µ− t⊥∆0

∆1

∣∣∣ <
Emin

SN (kx0, α, β).

The SC is fully gapped when
∣∣∣2t‖ + µ− t⊥∆0

∆1

∣∣∣ >

Emax
SN (kx0, α, β). The calculation of the BdG quasi-

particles’ energy spectrum is simplified for β = 0, for
which Emin

SN (kx0, α, β) = 2αδ and Emax
SN (kx0, α, β) =

2α
√

1 + δ2. The band structure of the topological SC
with zero energy surface states for this case is drawn
in Figs. 2a,b. For ∆0 < 0, Majorana edge states ap-
pear at kx = 0, which are shown in Fig. 2a by red curves.
The zero energy states move to the Brillouin zone bound-
aries, kx = ±π, for ∆0 > 0 (see Fig. 2b). Even though a
pair of zero energy states are localized at the same end,
they are protected by time-reversal symmetry against hy-
bridization, preventing their splitting to finite energies.

Fig. 2. The energy spectrum of quasi-1D superconduc-
tor as a function of kx in the non-trivial topological
phase (ν = 1) for (a) ∆0 > 0 with a zero-energy state
(red curves) at the center of the Brillouin zone and
(b) ∆0 < 0 with a zero energy state (red curves) at the
boundaries of the Brillouin zone. The parameters are
chosen in the unit of the band width 2t‖ = 1. In both
cases |∆0| = 0.5 × 2t‖ we choose, t⊥ = 0.2 × 2t‖ and
α = 0.6× 2t‖.
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3. Conclusion

In this paper it is argued that a TRI topological su-
perconducting phase may be realized in the novel class
of materials, consisting of regular, weakly-coupled super-
conducting wires in dielectric matrices [7–9]. The struc-
tures are fabricated under high pressures, which guaran-
tee higher value of spin-orbit interactions. Experimen-
tally observed enhancement of the critical temperature
of these structures allows us to suggest that apart from
the intra-wire pairing, the inter-wire pairing sets up too,
yielding an effective nodal order parameter. The order
parameter changes sign by crossing the nodal point be-
tween two Fermi surfaces, splitted due to spin-orbit inter-
actions. Note, that the only requirement for realization of
a non-trivial topological superconductor is that the su-
perconducting pair potential switches sign between the
two Fermi surfaces. Time-reversal symmetric topological
superconductor belongs to a DIII symmetry-class and is
classified by the DIII Z2 topological invariant.
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