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In order to analyze the strain distribution of InAs/GaAs quantum dot in a pyramidal geometry, the traditional

calculation method is based on the single band envelope approximation with the modified band edge from the eight
band k · p theory. In this paper, we use the eight band k · p Hamiltonian to calculate, and the piezoelectric effects
and the electronic structure are also discussed subsequently. To this end, some necessarily derived formulae in
calculations about using the finite element calculation software COMSOL are presented in this paper. The results
show the details about strain distributions, piezoelectric effects and electronic structure of an InAs/GaAs pyramidal
quantum dot, verify the feasibility and efficiency of the calculation method.
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1. Introduction
Quantum dots (QDs) are tiny crystal structure at the

nanoscale, having full localization wave functions and
quantization spectroscopy. Three-dimensional confine-
ments QD system has distinct energy state character-
istics of electrons like atoms compared with traditional
bulk materials, one-dimensional confinement quantum
well materials, and two-dimensional confinements quan-
tum wire materials [1–3], caused extensive concern in
some research fields such as optoelectronic devices, mi-
croelectronic devices, and quantum electronics [4, 5].
Self-organized growth is the main route of QDs fabrica-
tion. Strain self-organized QDs have considerable appli-
cation potentialities in the areas of light-emitting devices
and quantum electronics, becoming a research hotspot.

Strain plays an important role in growing strain self-
organized QDs. First, strain is the most important driv-
ing force in QDs self-organized growth. The more study
in strain and stress, the better we understand about the
self-organized principles. Second, the variation of strain
distributions correlates fairly with the electronic struc-
tures of QDs, which affect the optoelectronic character-
istic of QD devices [6, 7].

There are a few ways to analyze the strain of
QDs, which can be summarized to three methods:
(a) The molecular dynamic method [8], the potential
functions are used to calculate the interactions of atoms
in this method. Different materials correspond to dif-
ferent potential functions models, taking the InAs/GaAs
QD for example, the Stranski–Krastanow (S–K) growth
mode is one of the most common approaches. How-
ever, this method is suitable to describe the small volume
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isolated QD systems. (b) Continuum elastic energy the-
ory [9], assuming a QD is buried in an infinite or semi-
infinite substrate material, the strain distributions of QD
and materials can be changed into the QD surface Green
function integral. The assumption used in this method
influences the authenticity of results about the strain.
(c) Numerical calculation method based on continuity
and unity [10], assuming a definite shape QD, the mini-
mum of strain energy is obtained using the finite element
method (FEM) without other priori conditions.

In this paper, we focus on the strain distributions of
the InAs/GaAs QD in a pyramidal geometry. We could
find that, in order to obtain information about the strain,
piezoelectric effects and electronic structure, the tradi-
tional calculation method is based on the single band en-
velope approximation with the modified band edge from
the eight band k ·p theory. However, in this paper, we use
the eight band k · p Hamiltonian to calculate. In order
to facilitate using the simulation software COMSOL to
solve the eight complicated partial differential equations
which are tightly coupled, we also present some necessary
derived formulae to comprehend the calculation method
effectively. Finally some discussions and conclusions are
given.

2. Strain calculations

We use a stiffness matrix D to set up the dependence
of the strain components on stress. The strain and the
stress can be expressed as

ε =



εxx
εyy
εzz
εxy
εyz
εzx


=



∂u/∂x

∂v/∂y

∂w/∂z

(∂u/∂y + ∂v/∂x)/2

(∂v/∂z + ∂w/∂y)/2

(∂u/∂z + ∂w/∂x)/2


, (1)
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σ = D(ε− ε0) + σ0, (2)
where the displacements along the three-dimensional co-
ordinates are u, v, and w. D is the stiffness matrix.
The original state of stress is σ0, which could be consid-
ered as zero across the entire system. The original state
of strain is ε0, which is the lattice mismatch of the het-
erostructure in the QD, represented as

ε0 =

{
εii = (aInAs − aGaAs)/aGaAs, i = x, y, z,

εij = 0, i 6= j.
(3)

Consider a zinc-blende QD, the elastic constant tensor is
represented as

D =



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44


. (4)

The linear continuum elastic theory is used to calculate
the strain distributions. The FEM with periodic bound-
ary conditions is used in this paper. The system elas-
tic energy is minimized by the conjugate gradient algo-
rithm which means the lattice structures tends to sta-
bility. Consider the InAs/GaAs QD as a square-based
pyramid and the wetting layer could be ignored when
calculating the strain [11].

3. Piezoelectric effects

Piezoelectric effect is an electric polarization phe-
nomenon caused by stress which effect on the asymmetric
crystal [12–14]. The strain tensor in this system can be
calculated according to the minimum potential energy
principle of elastic mechanics. We could obtain the lin-
ear polarization field P according to the strain tensor or
the stress tensor from the formula

Pi =
∑
lm

eilm(r)εlm(r). (5)

The formula above can be written in detail

 Px

Py

Pz

 =

 e11 e12 e13 e14 e15 e16

e21 e22 e23 e24 e25 e26

e31 e32 e33 e34 e35 e36




εxx
εyy
εzz
2εyz
2εzx
2εxy


. (6)

Some redundant information are included in the for-
mula (6) and the necessary simplification is taken. For
the zinc-blende InAs/GaAs material, e14 = e25 = e36,
other elements are zero, so the polarization P can be
represented as Px

Py

Pz

 =

 e14 0 0

0 e14 0

0 0 e14


 2εyz

2εzx
2εxy

 . (7)

Note that the second order polarization has become an
important part of the total polarization. On the basis of
density functional theory, the second order polarization
of InAs/GaAs can be derived [15]:

P (2) = 2B114

 εxxεyy
εyyεxz
εzzεxy

+ 2B124

 εyz(εyy + εzz)

εxz(εxx + εzz)

εxy(εxx + εyy)



+4B156

 εxzεxy
εyzεxy
εyzεxz

 . (8)

The values of Bijk we used in for calculation are given in
Table I, unit is C/m2.

TABLE I
The values of Bijk.

B114 B124 B156

InAs –0.531 –4.076 –0.120
GaAs –0.439 –3.765 –0.492

To the divergence operation of the total polarization,
written as (P+P (2)), we get the fixed piezoelectric charge
density

ρ(r) = −∇ · (P + P (2)). (9)
In the light of the Poisson equation, the piezoelectric po-
tential VP can be calculated.

ε0∇ · (εr(r)∇VP ) = ρ, (10)
where ε0 is the permittivity of vacuum, εr is the relative
static dielectric tensor.

4. Electronic structure calculations

In this section, we use COMSOL software to investi-
gate the electronic structure based on eight bands k · p
Hamiltonian

H = H0 +Hs + V, (11)
where H0 is the kinetic piece of the Hamiltonian, ex-
pressed as

H0 =



A 0 V † 0
√

3V −
√

2U −U
√

2V †

0 A −
√

2U −
√

3V † 0 −V
√

2V U

V −
√

2U −P +Q −S† R 0
√

3
2
S −

√
2Q

0 −
√

3V −S −P −Q 0 R −
√

2R
√

1
2
S

√
3V † 0 R+ 0 −P −Q S†

√
1
2
S† √

2R†

−
√

2U −V † 0 R+ S −P +Q
√

2Q
√

3
2
S†

−U
√

2V †
√

3
2
S† −

√
2R†

√
1
2
S

√
2Q −P −∆ 0

√
2V U −

√
2Q

√
1
2
S† √

2R
√

3
2
S 0 −P −∆


, (12)
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where the superscript “†” denotes the complex conju-
gate transpose operation. Here the components of H0

are given

A = ~2

2m0
(k2

x + k2
y + k2

z) + Ec,

P = ~2

2m0
γ1(k2

x + k2
y + k2

z)− Ev,

Q = ~2

2m0
γ2(k2

x + k2
y − 2k2

z),

R =
√

3 ~2

2m0
[−γ2(k2

x − k2
y) + 2iγ3kxky],

S =
√

3γ3
~2

m0
kz(kx − iky),

U = 1√
3
P0kz,

V = 1√
6
P0(kx − iky).

(13)

Some necessary explanations: Ec and Ev are the
conduction band and valence band before strained.
V is the confining potential. P and Q are the
changes of valence band edge caused by strain. P0 de-
notes the band mixing of the two bands above.

∆ denotes the spin–orbit splitting. Some Luttinger pa-
rameters are defined as:

γ1 = γL
1 −

Ep

3Eg+∆ ,

γ2 = γL
2 − 1

2
Ep

3Eg+∆ ,

γ3 = γL
3 − 1

2
Ep

3Eg+∆ ,

(14)

The values of γL
i we used for calculation are given in

Table II, where the energy gap Eg = Ec − Ev, and
Ep = 2m0P

2
0 /~2.

TABLE II
The values of γL

i .

γL
1 γL

2 γL
3

InAs 19.67 8.37 9.29
GaAs 6.85 2.1 2.9

Then we define Hs, which could bring the strain vari-
ations by relating to other elements

Hs =



ace 0 −v† 0 −
√

3v
√

2u u −
√

2v†

0 ace
√

2u
√

3v† 0 v −
√

2v −u
−v

√
2u −p+ q −s† r 0

√
3
2s −

√
2q

0
√

3v −s −p− q 0 r −
√

2r
√

1
2s

−
√

3v† 0 r† 0 −p− q s†
√

1
2s
† √

2r†

√
2u v† 0 r† s −p+ q

√
2q

√
3
2s
†

u −
√

2v†
√

3
2s
† −

√
2r†

√
1
2s

√
2q −ave 0

−
√

2v −u −
√

2q
√

1
2s
† √

2r
√

3
2s 0 −ave



. (15)

Here the components of Hs are given

p = av(exx + eyy + ezz) = ave,

q = b
[
ezz − 1

2 (exx + eyy)
]

=

1
2b[2ezz − (exx + eyy)],

r =
√

3
2 b(exx − eyy)− idexy,

s = −d(exz − ieyz),

u = 1√
3
p0(ezxkx + ezyky + ezzkz),

v = 1√
6
p0[(exx − ieyx)kx + (exy − ieyy)ky

+ (exz − ieyz)kz].

(16)

ac denotes the conduction band deformation potential,
av denotes the hydrostatic valence-band deformation,
eij denotes the strain tensor, and the shear deformation
potentials are b and d. The third part of H is V , which
is expressed as

V =



Ec 0 0 0 0 0 0 0

0 Ec 0 0 0 0 0 0

0 0 Ev 0 0 0 0 0

0 0 0 Ev 0 0 0 0

0 0 0 0 Ev 0 0 0

0 0 0 0 0 Ev 0 0

0 0 0 0 0 0 Ev 0

0 0 0 0 0 0 0 Ev


. (17)

When using the COMSOL software to complete the nu-
merical calculations, we should do some necessary work
in advance. Due to the fact that many parameters men-
tioned above cannot be substituted into the formulae in
COMSOL directly, we need some changes. The following
formulae derivations and transformations will help us to
simplify the calculations and improve efficiency, so they
are very important. For convenience, set ~2/2m0 = cc,
then the components of H0 can be adapted as follows:
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Ac =

 cc 0 0

0 cc 0

0 0 cc

 = cc · I,

Pc = γ1cc · I,

Qc =

 γ2cc 0 0

0 γ2cc 0

0 0 −2γ2cc

 ,

Pc+Qc=

 (γ1 + γ2)cc 0 0

0 (γ1 + γ2)cc 0

0 0 (γ1 − 2γ2)cc

 ,

Pc−Qc=

 (γ1 − γ2)cc 0 0

0 (γ1 − γ2)cc 0

0 0 (γ1 + 2γ2)cc

 ,

−(P +Q)c = −cc

 γ1 + γ2 0 0

0 γ1 + γ2 0

0 0 γ1 − 2γ2

 ,

−(P −Q)c = −cc

 γ1 − γ2 0 0

0 γ1 − γ2 0

0 0 γ1 + 2γ2

 ,

Rcc =

 −
√

3cc · γ2 i2
√

3cc · γ3 0

0
√

3cc · γ2 0

0 0 0

 =

−cc


√

3γ2 − i
√

3γ3 0

− i
√

3γ3 −
√

3γ2 0

0 0 0

 ,

Scc = 2
√

3cc · γ3

 0 0 1

0 0 − i

0 0 0

 =

−cc

 0 0 −
√

3γ3

0 0 i
√

3γ3

−
√

3γ3 i
√

3γ3 0

=
√

3γ3cc

 0 0 1

0 0 − i

1 − i 0

 ,
Ubeta = ubetaz =

− i√
3
P0,

Vbeta =


− iP0√

6

−P0√
6

0

 =
− iP0√

6

 1

− i

0

 ,

ubeta =
− iP0√

3

 ezxezy
ezz

 ,

vbeta =
− iP0√

6

 exx − ieyx
exy − ieyy
exz − ieyz

 .
Then

Ubeta/ubeta =
− iP0√

3

 −ezx−ezy
1− ezz

 =
iP0√

3

 ezx
ezy

ezz − 1

 ,

Vbeta/vbeta =
− iP0√

6

 1/(exx − ieyx)

− i/(exy − ieyy)

−(exz − ieyz)

 =

−P0√
6

 i − (iexx + eyx)

1− (iexy + eyy)

−(eyz + iexz)

 .
Substitute these components above in formula to solve
equation as follows:
∇(−c∇u) + β∇u+ du = λu. (18)

Meanwhile we give most of material parameters used for
calculations in the paper, as Table III.

TABLE III
The material parameters of InAs/GaAs used for calculations.

m0 εr C11 C12 C44 Ec Ev ac av e14 b

InAs 0.04 15.2 83.4 45.4 39.5 0.67 0.25 –5.08 1 0.045 –1.8
GaAs 0.0667 12.9 118.8 53.8 59.4 1.519 0 –7.17 1.16 0.16 –1.7

5. Results and discussions
Consider the InAs/GaAs QD as a square-based pyra-

mid. Although the wetting layer does not influence
the strain distributions obviously, we still introduce it
for completeness of the true model. The thickness

of wetting layer is 2 nm. The growth direction is along
the (001) direction. The thickness of cap and substrate
are 10 nm and 40 nm, respectively. The height of the
quantum dot is 6 nm. The length of the base is 12 nm,
as in Fig. 1.
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Fig. 1. Schematic drawing of the geometry of QD.

When we observe the strain distributions along a
straight line through the center of the QD with the (001)
direction, the results are shown in Fig. 2, where εxx, εyy,
εzz, hydrostatic (εh) and bi-axial (εb) strain distributions
are corresponding to Fig. 2a–e, respectively.

Fig. 2. The strain distributions along the (001) direc-
tion through the centre of the QD. (a)–(c) are the εxx,
εyy, εzz strain components, respectively. (d), (e) are
the hydrostatic and bi-axial strain distributions, respec-
tively.

The strain distributions along the cross-sections of the
(010) plane through the center of the QD and in three-
dimensional space are given in Fig. 3 and Fig. 4, where
εxx, εyy, εzz, εh, and εb are corresponding to Fig. 3
and Fig. 4a–e, respectively.

Figure 2 presents that the strain value in the QD re-
gion produces a considerable change. The values of εxx
and εyy are equal along the (001) direction and manifest
as compressive strain in the inner part of QD. In the re-
gion from the bottom to the top of QD, the values of εxx

Fig. 3. The strain distributions along the cross sec-
tions of the (010) plane through the center of the QD.
(a)–(c) are εxx, εyy, εzz strain components, respectively.
(d), (e) are the hydrostatic and bi-axial strain distribu-
tions, respectively.

Fig. 4. The strain distributions of QD in three-
dimensional space. (a)–(c) are the εxx, εyy, εzz strain
components, respectively. (d), (e) are the hydrostatic
and bi-axial strain distributions, respectively.

and εyy increase slowly. It means the relaxation has hap-
pened in the QD but not enough. Near the bottom of QD,
the coherency phenomenon of InAs and GaAs lattices is
obvious, leading to a large strain. Near the top of QD,
the strain is smaller due to fact that lots of strain are re-
leased during the process of quantum dot growth. In the
region outside the QD, the value of εxx is greater than
zero which is consistent with the experimental results.

Next, we discuss the hydrostatic strain and the bi-axial
strain. The hydrostatic strain will cause the movement
of band edges while the bi-axial strain will cause the sep-
aration between heavy hole band and light hole band.
Both two strains play a decisive role in terms of elec-
tronic potential, discreteness of light waves and the state
of electron holes and also affect the study of quantum
dot devices. Figure 2 presents the hydrostatic strain dis-
tribution in the QD. The value of εh is very small in the
substrate and cap layer that is generally considered as
zero while εh manifest as compressive strain in the inner
part of QD. We can think of the hydrostatic strain in
the QD as a potential well. Furthermore, a finite depth
potential well is formed in the (001) direction of QD ben-
efiting from the hydrostatic strain. Note that the hydro-
static strain is not affected by the Q value but the bi-
axial strain is. The value of εb is positive near the base
of QD and negative near the top which means with the
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change of symbol, the energy level of heavy holes begin
to be lower than the light holes. The bigger Q value, the
change taking place is closer to the top of QD.

Form Fig. 3 and Fig. 4 one can notice that, to the
εxx and εyy strain component, the compressive strain
mainly distribute in the inner part of QD and wetting
layer and the main concentration of tensile strain is at
the top of QD. To εzz strain component, the compressive
strain mainly distribute at the top and the tensile strain
mainly distribute in the inner part of QD and wetting
layer. The hydrostatic strain also distribute in the inner
part of QD and wetting layer, the value is negative, and
in other regions approximates to zero. The bi-axial strain
in the inner part of QD and wetting layer manifests as
tensile strain while compressive strain — at the top of
QD. These conclusions are consistent with the observa-
tions for one-dimensional case.

We know that the shear strain components can decide
the strength of the linear polarizations, however, it is not
enough when we discuss the second order polarizations,
the normal strains should be considered. Figure 5 shows
the 3D piezoelectric potential distribution.

Fig. 5. 3D piezoelectric potential distribution.

From Fig. 5 one can notice that the total piezoelec-
tric potential presents a C2v symmetry, different with the
symmetry of QD (C4v), which results in the exciton fine
structure splitting of QD. Furthermore, if the InAs/GaAs
QD grows along the (111) direction, the piezoelectric po-
tential will present a C3v symmetry. By this time, the
electronic confining potential still has a good symmetry
to restrict the exciton fine structure splitting [16, 17].

The electronic structures are also given in Fig. 6.
By solving Eq. (18) numerically, we can obtain the

bound states as shown in Fig. 6. As we can see, the wave
functions are symmetrically distributed in the QD mean-
while electrons and holes are well confined in the QD.

Finally we give some calculation settings and hardware
configuration as references: the meshes of substrate, cap
layer, wetting layer and inner part of QD are 3, 3, 2,
and 1 nm, respectively. A computer with 16 cores (i7)

Fig. 6. The electron probability density distributions.
(a), (b) and (c) are 3D stereogram, overhead view and
sectional view, respectively.

and 128 G memory is used. The software version of
COMSOL is 4.3b. A complete calculation will cause
about 44 min 50 s, perfectly acceptable for most of re-
searchers.

6. Conclusions
The strain distributions, piezoelectric effects, and the

electronic structure of pyramidal InAs/GaAs QD are cal-
culated in this paper. The theoretical bases of calculation
are the continuum elastic theory, eight band k · p theory
and the finite element method. Compared to the tradi-
tional method, we use the COMSOL software to solve
the eight band k · p Hamiltonian directly. Some deriva-
tions and transformations about the parameters which
are used in calculation are given. The calculated results
show that both strain distributions and piezoelectric ef-
fects have a significant impact on the electronic structure
of InAs/GaAs QD, verify the feasibility and efficiency of
the calculation method. The whole solving process will
have a reference value to other researchers.
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