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We investigate the polaron dynamics on the nonlinear lattice with the cubic nonlinearity in the tight-binding

approximation. The electron–phonon interaction is accounted in the Su–Schrieffer–Heeger approximation. The
system of nonlinear partial differential equations is derived in the continuum approximation. It has an exact
solution at a special relation between parameters of lattice nonlinearity α and electron–phonon interaction χ. An
approximate analytical solution is obtained at arbitrary parameters α and χ. Results of the numeric simulations
are in a good agreement with the analytical predictions in both cases. The range of parameter values, where
theoretical formulae are valid, is determined.
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1. Introduction

Polarons as "self-trapped” charge carriers can explain
many effects associated with the charge transport in
nonmetallic materials. Special interest was excited af-
ter the effective charge transport over long distances
(tenth nanometers) was discovered in synthetic DNA
and polypeptides [1–8] (see also reviews [1, 9–11]). E.
Conwell with colleagues was probably the first who ap-
plied the SSH approximation in an attempts to describe
the charge transfer in DNA [12, 13] using the polaron
paradigm. This line of research was further extensively
studied [14–21].

In the study of conductive polymers, organic semicon-
ductors and molecular electronics, the tight-binding (TB)
like models [22] are widely applied. The wave functions
are based upon superposition of wave functions for iso-
lated atoms located at each atomic site (the Wannier
states). The interatomic matrix elements are represented
as hopping parameters between neighboring sites. The
TB approximation also demonstrated its efficiency in the
study of charge transfer in non-metallic materials.

The Su–Schrieffer–Heeger (SSH) approximation aimed
at the accounting the electron–phonon interaction is
known since 1979–1980 [23, 24]. This approximation was
initially applied to polyacetylene (PA) to describe the
soliton-like (kink) excitations. The solution was obtained
in the form of hyperbolic tangent kink order-parameter
profile. Based on the same principles, the new solutions
were found which were conventional strong-coupling po-
larons with spin 1/2 and charge ±e in the dimerized PA
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chain [25]. Though PA is a rather special system being
multielectron system with the dimerized ground state,
the SSH model came into play in further investigations
of low-dimensional molecular systems.

Obtaining the analytical solution for polarons is of
primary interest as it allows qualitative and quantita-
tive estimations of different properties. Few examples
are known where the exact or approximate solutions are
derived. One is the polaron solution on the harmonic
lattice in SSH approximation [26–28]. It has the hyper-
bolic secant form typical for soliton solution. Similar in
appearance solution is obtained for the Davydov–Scott
model of charge transfer [29, 30]. The polaron solution
is also derived for the Holstein model [31].

In the present paper the analytical solution for mov-
ing polarons on the anharmonic lattice is derived in SSH
approximation at special relation between parameters of
lattice nonlinearity α and electron–phonon interaction χ.
The solution is obtained in the continuum approxima-
tion for the large radius polaron. As the polaron radius
is inversely proportional to the parameter χ, the con-
tinuum approximation implies that both parameters α
and χ should be small. At larger parameters values an
approximate analytical solution is also derived. The do-
main of the theory applicability is checked in numeric
modeling.

2. Exact solution in the continuum
approximation

2.1. Setting up the problem

We consider a lattice model of a molecular system (e.g.
DNA chain) consisting of N particles in TB approxima-
tion. A “particle” can represent a DNA base. The Hamil-
tonian consists of two contributions. The one is classical
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lattice Hamiltonian Hlat and the other accounts for the
electron–phonon interaction Hint:

H = Hlat +Hint, (1)
where the lattice Hamiltonian reads

Hlat =
m

2

N∑
j=1

ẋ2j +
k

2

N−1∑
j=1

(xj+1 − xj)2

−α
3

N−1∑
j=1

(xj+1 − xj)3 . (2)

and m, k and α are mass of the particle, lattice rigidity,
and the nonlinearity parameter, correspondingly. The
choice of this potential is explained by the fact that it rep-
resents the series expansion up to the second order of such
“chemical” potentials as Morse, Lennard-Jones, Toda and
others. The Hamiltonian of the electron–phonon interac-
tion in the matrix representation is given by

Hint =



e1 t1 0 . . . 0 0

t1 e2 t2 . . . 0 0

0 t2 e3 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . eN−1 tN−1
0 0 0 . . . tN−1 eN


. (3)

and the wave function is the N -vector Ψ(t) =
ψ1(t), ψ2(t), . . . , ψN (t). Hint is the symmetrical tridiago-
nal matrix. On-site energies ej stand on the main diago-
nal and hopping transfer integrals tj stand on secondary
diagonals. Hopping integrals are expressed through the
linear deviation of relative displacements from the equi-
librium and in the SSH approximation are given by

tj = − [t0 − χ (xj+1 − xj)] , (4)
where t0 is the hopping integral at equilibrium and χ is
the parameter of electron–phonon interaction. The abso-
lute value of the hopping integral increases if interparticle
distance (xj+1 − xj) diminishes. If the lattice is homo-
geneous (comprised by equal particles) then all on-site
energies ej are equal and without loss of generality they
can be set to zero, which means the electron energy point
of reference.

It is convenient to make the variables dimensionless.
We demonstrate the nondimensionalization by the exam-
ple of DNA. Three independent parameters, e.g. mass
m, rigidity coefficient k and energy t0 in (1) and (4)
can be chosen for said purpose. Typical values of these
parameters are [17, 18, 21, 32]: m = 130 a.m.u. =
2.16 × 10−25 kg, k = 0.85 eV Å−2 = 13.6 kg s−2 and
t0 = 0.3 eV = 4.8×10−20 kgm2 s−2. All three values are
set numerically to unity.

It is seen that the length unit can be constructed, us-
ing the dimensionality considerations, from parameters t0
and k: [L] = (t0/k)

1/2 = 0.59 Å. Similarly, the time unit
is the combination of m and k: [t] = (m/k)1/2 = 0.13 ps.
These units are used as an example in the analysis of
dimensionless DNA Hamiltonian (1). Other parame-
ters values t0 and χ in the SSH approximation are also
used [33], but the particular choice of numerical values

does not significantly influence the final results. Param-
eters α and χ are also reduced to the dimensionless form
and α ≈ 1.2, χ ≈ 1.1 for DNA. The same notations for
dimensionless parameters are used below.

The system of coupled dimensionless equations in vari-
ables xj and ψj is obtained from (1)–(4):

ẍj = − (xj − xj−1) + (xj+1 − xj) + α
[
(xj − xj−1)2

− (xj+1 − xj)2
]
− χ

((
ψ∗j−1ψj − ψ∗jψj+1

)
+
(
ψj−1ψ

∗
j − ψjψ∗j+1

))
ψ̇j = −

i

~̃
{[1− χ (xj − xj−1)]ψj−1

+ [1− χ (xj+1 − xj)]ψj+1} , (5)
where the first equation is the Newtonian equation, and
the second is the time-dependent Schrödinger equation
i ~̃Ψ̇(t) = HintΨ(t), where ~̃ ≈ 1.7 × 10−2 is the dimen-
sionless Planck constant.

It is more convenient to rewrite system (5) in variables
qj ≡ xj+1 − xj . Then system (5) transforms to

q̈j = qj+1−2qj+qj−1−α
[
(qj+1−qj)2− (qj−qj−1)2

]
−χ
((
ψ∗j+1ψj+2 − 2ψ∗jψj+1 + ψ∗j−1ψj

)
+
(
ψj+1ψ

∗
j+2 − 2ψjψ

∗
j+1 + ψj−1ψ

∗
j

))
ψ̇j = −

i

~̃
[(1− χqj)ψj+1 + (1− χqj−1)ψj−1] . (6)

This system is integrated using the fourth-order Runge–
Kutta algorithm. In all cases the computational accuracy
of the total energy and the wave function norm < 10−5.

2.2. The continuum approximation

A common technique of deriving solution of discrete
Eqs. (6) is the usage of the continuum approximation. In
the continuum approximation discrete variables are ex-
panded into series

qj±1 = q ± aq′ + a2

2!
q′′ ± a3

3!
q′′′ +

a4

4!
q′′′′ ± . . .

ψj±1 = ψ ± aψ′ + a2

2!
ψ′′ ± . . . , (7)

where primes mean spatial derivatives of the correspond-
ing orders and a is a dimensionless parameter of expan-
sion (a = 1). After the substitution of expansions (7)
into (6) a system of partial differential equations (PDEs)
is obtained

qtt = qxx +
1

12
qxxxx − α

(
q2
)
xx

+ 2χ (ψψ∗)xx

ψt =
i

~̃
[2 (1− χq)ψ + ψxx] . (8)

2.3. The particular solution of PDEs (8)

PDEs system (8) is not exactly integrable in general
case. However, it reduced to integrable system when
χ = 2α. In this case, it has a solution in the form of
localized moving excitation
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q(x, t) = − A

cosh2 ((x− vpt) /w)

ψ(x, t) =
B exp (i (kx+ ωt))

cosh ((x− vpt) /w)
. (9)

Solution (9) has the form coinciding with the exact solu-
tion [26, 28] for the harmonic lattice, i.e. when α = 0 in
(8). The solution is specified by following parameters: w
and vp are the polaron width and velocity, A is an ampli-
tude of relative displacements, B is an amplitude of the
wave function, (kx+ ωt) is the wave function phase.

Substitution of (9) into (8) with the wave function nor-

malization condition
+∞∫
−∞
|Ψ(x)|2 dx = 1 results in the

following relations between polaron parameters:

w = (2αA)
−1/2

= (χA)
−1/2

, B = (2w)
−1/2

,

vp =

(
1 +

2αA

3
−
√
χ3

A

)1/2

≈ 1 +
αA

3
− 1

2

√
χ3

A
,

k = ~̃vp/2� 1, ω =
(
2 + w−2 − k2

)
/~̃� 1. (10)

Solution (10) is one-parametric, i.e. all parameters can
be expressed through one free parameter. It is conve-
nient to choose A as a free parameter. The substitution
x → jshould be made in (9) to get the solution on the
discrete lattice.

It worth noting that if the electron–phonon interaction
is absent, i.e. χ = 0, then q(x, t) in (9) is nothing else
but the soliton, and its velocity coincides with the veloc-
ity of soliton on the α-FPU lattice [34]. However, if the
lattice is harmonic, i.e. α = 0 then the polaron velocity
coincides with the polaron velocity on the harmonic lat-
tice [26, 28]. Thus, the expression for the polaron velocity
(10) is correct in two limiting cases.

The dimensionless sound velocity is vsnd = 1. Equa-
tion (10) shows that the lattice nonlinearity α increases
the polaron velocity, and the electron–phonon interaction
χ decreases the polaron velocity.

Both amplitudes A and B have lower limits for the
standing polaron at vp = 0: Amin ≈ 0.063 and Bmin ≈
0.28 when χ = 0.4 and α = 0.2. Amplitudes A and B
increase with the growth of the polaron velocity.

2.4. Numeric test of the analytical solution

We analyze solution (9), (10) when χ = 2α and the
continuum approximation is valid. The solution accuracy
is checked in numeric integration of discrete Eqs. (6).

We compare the results on the anharmonic lattice with
the exact solutions on the harmonic lattice [28]. Fig-
ure 1a shows the dependence of the unmovable polaron
amplitude A on χ for both harmonic and anharmonic lat-
tices. One can see the good agreement between analytical
and numeric results for the electron–phonon interaction
χ ≤ 0.5. It means that the continuum approximation is
adequate in this range of χ values. For larger χ values
polaron becomes narrower and its width w is compara-
ble with the lattice period, and the continuum approx-
imation is not valid. Moreover, Fig. 1a demonstrates

that the difference between harmonic and anharmonic
lattices is very small for χ < 0.5. It is not surprising be-
cause the nonlinearity parameter is comparatively small
(α ≤ 0.25) and the overall dynamics does not differ sig-
nificantly from the harmonic one.

Fig. 1. a) The dependence of the unmovable polaron
amplitude A on the parameter of electron-phonon in-
teraction χ. Solid line and filled circles are the ana-
lytical expression and numeric results for the harmonic
lattice. Dashed line and filled squares are the analyti-
cal expression and numeric results for the anharmonic
lattice. b) The dependence of moving polaron velocity
vp on amplitude A for the anharmonic lattice. Solid
line and filled circles are the analytical and numeric re-
sult for χ = 0.4; dashed line and filled squares are an-
alytical and numeric result for χ = 0.7. (Recall that
amplitude A is measured in the dimensionless units,
unit length = 0.59 Å; unit velocity = unit length/unit
time = 454 m/s).

The numeric test of solution (9) for moving polarons
is shown in Fig. 1b where numeric and analytical results
are compared for two values of χ. One can see an excel-
lent agreement for χ = 0.4, whereas analytical and nu-
meric results differ noticeably for χ = 0.7. However, nu-
meric data demonstrate clearly pronounced relation be-
tween polaron amplitude and velocity. It indicates that
there can exist a stable polaron solution on discrete lat-
tice which is beyond the scope of our approximation.

Solution (9) is derived within two strict limitations: (i)
the nonlinearity parameter α and the electron–phonon in-
teraction χ are both small, and (ii) there fulfils the exact
relation χ = 2α. In the general case it is not true. In
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the next section we consider the case of arbitrary values
α and χ.

3. An approximate solution at arbitrary
parameter values χ and α

Numerical analysis shows that at arbitrary χ and α the
wave function shape does not obey the simple hyperbolic
cosine form and it can be better fitted by the fractional
power of cosine. Thus, the trial solution is

q(x, t) = − A

cosh2 ((x− vpt) /w)

ψ(x, t) =
B exp (i (kx+ ωt))

coshν ((x− vpt) /w)
, (11)

with fractional power ν > 1; an expression for rela-
tive displacements coincides with (9). Broadly speak-
ing, the fractional power in (11) is not surprising. It can
be easily checked that the stationary Schrödinger equa-
tion with potential U(x) = −C cosh−2(Dx) has solution
ψ(x) = B cosh−ν(Dx), where ν depends on parameters C
and D, and B is determined by the normalization condi-

tion
+∞∫
−∞
|Ψ(x)|2 dx = 1. It is to be recalled that the trial

solution similar to (11) for the self-trapped bell-shaped
solutions in the Davydov–Scott model was used in [30].
Fraction power of hyperbolic secant was also used in vari-
ational analysis of moving breathers on the sine-Gordon
lattice [35, 36]. Below we derive an approximate analyti-
cal solution of system (8) at arbitrary (but not too large)
parameters χ and α using (11) as a trial solution.

Solution (11) exactly satisfies the second equation of
system (8) and gives following relations between param-
eters:

A = ν (ν + 1) /
(
2χw2

)
,

k = ~̃vp/2� 1, ω =
(
2 + w−2 − k2

)
/~̃� 1. (12)

It is convenient to make variable substitution y = (x −
vpt)/w. Then the first equation in (8) can be double in-
tegrated by y and the result is

g1

cosh2(y)
+

g2

cosh4(y)
+

g3

cosh2ν(y)
= 0, (13)

where coefficients g1, g2, and g3 are some combinations
of parameters A,B,w, vp, ν.

Afterwards the hyperbolic functions cosh−2(y),
cosh−4(y), cosh−2ν(y) are expanded in series in terms
of powers y up to the second order. Equating terms of
zeroth and second powers by y, one gets two additional
equations for the relation between parameters. The last,
sixth, equation is obtained from the normalization con-
dition of the wave function. As a result three additional
equations for the relation between polaron parameters
are derived which completely define the solution:

w−3 =
(ν − 1)χ3

4ν−2Z(ν)
[
αν2 (ν + 1)

2 − χν (ν + 1)
] ,

B2 =
1

22ν−1wZ(ν)
,

v2p = 1 +
Aw−2 − 6 (2− ν)χB2

3A
, (14)

where Z(ν) = Γ 2(ν)/Γ (2ν) and Γ is the gamma-
function. Solution (11) is one-parametric, as previously,
and ν is chosen as a free parameter. It can be easily
checked that solutions (11), (12), (14) have the exact
limit at ν → 1, when it converts into (9)–(10), which is
equivalent to the case χ = 2α.

There exists one more particular exact solution at ν =
2 (see (12) and (14)) with the following set of parameters:

A = 3/
(
χw2

)
, B = (3/4w)

1/2
,

w−1 = χ/ (6α− χ)1/3 vp =
[
1 + 1/

(
3w3

)]1/2
,

k = ~̃vp/2, ω =
(
2 + w−2 − k2

)
/~̃. (15)

This solution corresponds to a single supersonic solution
with fixed velocity, width and amplitude depending on χ
and α.

Approximate solution with the trial functions (11) is
checked in numerical simulations. Lattice parameters
χ = α = 0.4 are chosen as an example. Initial conditions
are specified by (11), (12), (14) with the free parame-
ter ν = 1.4. Figure 2 shows the evolution of the initial
conditions. One can see that the polaron is very stable
and holds the initial shape after travelling through ≈ 400
lattice sites.

Fig. 2. Polaron evolution on the lattice with parame-
ters χ = α = 0.4, ν = 1.4, N = 500. Left polaron is de-
fined by initial condition (11), (12), (14) at t = 0. Right
polaron is the result of the evolution during t = 400.
Positive values are modulus of wave function |ψ(j)|, neg-
ative values are relative lattice displacements qj .

Next we compare analytical and numeric results. We
investigate the lattice with fixed value of parameter of
electron–phonon interaction χ = 0.4. The anharmonicity
parameter varies in range α ∈ [0.21−1.0]. Value χ = 0.4
is chosen as it is the largest value for which the con-
tinuum approximation is still valid. The lower value of
α = 0.21 is chosen as it is close to the exact solution (9),
(10) for α = χ/2 = 0.2 (when ν = 1). For smaller value
of α (α < 0.2) the difference between harmonic and an-
harmonic lattices vanishes. The choice of α upper value
(α = 1.0) is arbitrary.
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Initial conditions are chosen according to (11), (12),
(14) in the numeric simulation. Parameter ν varies in
the range νmin < ν ≤ 2, where νmin corresponds to the
standing polaron (vp = 0). The upper limit ν = 2 is
chosen as it corresponds to exact solution (15). There
exist solutions (11), (12), (14) for ν > 2.

The polaron parameters are analyzed after evolution
time t = 400 at three different values of α = 0.21, 0.4,
1.0; χ = 0.4. Figure 3 shows the dependences of param-
eters (amplitude A and velocity vp) vs. ν at different
α. Solid lines show analytical dependences and symbols
show numeric results. Recall that α = 0.2 corresponds
to the case of exact analytical solution (9), (10) which
is a family of one-parametric solutions where vp ≥ 0,
A ≥ Amin. Here Amin is determined from (10) for vp = 0.
This family of analytical solution for χ = 0.4. α = 0.2
corresponds to the vertical lines in Fig. 3 for χ = 0.4,
α = 0.2, Amin ≈ 0.06. Figure 3 demonstrates that an-
alytical and numeric results are in good agreement for
amplitudes A ≤ 0.7. For larger amplitudes the discrete-
ness is essential and solutions (11), (12), (14) are not
applicable.

Fig. 3. The dependence of polaron parameters on ν af-
ter evolution time t = 400 at different α values. Solid
lines are analytic expressions (12), (14), symbols are
numeric results. a) Amplitude of relative displacements
A vs. parameter ν. Dashed horizontal line shows the
upper limit of the polaron amplitude A ≈ 0.7, where
numeric and analytical results coincide with high accu-
racy. b) Polaron velocities vp vs. parameter ν.

4. Conclusions

In conclusions we briefly summarize the main results.
The detailed analysis of the polaron dynamics on the lat-
tice with cubic nonlinearity in the TB approximation is
done. The exact solution is derived for large radius po-
larons when parameters of nonlinearity α and electron–
phonon interaction χ are small, and comply with the re-
quirements χ = 2α. The solution is soliton-like and is
specified by a single free parameter, e.g. amplitude of
relative displacements A. The numeric modeling demon-
strates the high polaron stability and solution accuracy.
If the relation χ = 2α is not valid, but both parameters
are small, an approximate solution is also derived.

Both the exact and approximate solutions are in good
agreement with numeric simulations if the amplitude of
relative displacements is not larger than a certain value
Amax which depends on α and χ. For larger amplitudes
the polaron width becomes too narrow and is compara-
ble with the lattice period. In this case the continuum
approximation within which the solutions are derived,
becomes inapplicable.

The relation between numeric values of α and χ deter-
mine the solution type. If the nonlinearity is small then
the solution behaves like the polaron on the harmonic
lattice and the polaron is subsonic.

If electron–phonon interaction χ is small and nonlin-
earity α is sufficiently large, solitons are the dominant
types of excitation on the α-FPU lattice. The wave func-
tion is trapped by the preliminary formed lattice defor-
mation. The wave function adiabatically follows the soli-
ton dynamics with the electron–phonon interaction neg-
ligibly influencing the polaron parameters. This scenario
was investigated by Velarde with colleagues [37, 38] and
they found the bounded state of soliton and electron,
named solectron. However in contrast to our results,
solectron has the supersonic velocity coinciding with the
velocity of a bare soliton.

When parameters α and χ are comparable and are not
small there is a competition between the non-linearity
and electron–phonon interaction resulting in unusual so-
lutions including multipeaked polarons [39].

References

[1] J.C. Genereux, J.K. Barton, Chem. Rev. 110, 1642
(2010).

[2] J.C. Genereux, S.M. Wuerth, J.K. Barton, J. Am.
Chem. Soc. 133, 3863 (2011).

[3] Y. Arikuma, H. Nakayama, T. Morita, S. Kimura,
Angew. Chem. Int. Ed. 49, 1800 (2010).

[4] K.E. Augustyn, J.C. Genereux, J.K. Barton, Angew.
Chem. Int. Ed. 46, 5731 (2007).

[5] J.K. Barton, E.D. Olmon, P.A. Sontz, Coordin.
Chem. Rev. 255, 619 (2011).

[6] J.D. Slinker, N.B. Muren, S.E. Renfrew, J.K. Barton,
Nature Chem. 3, 228 (2011).

http://dx.doi.org/10.1021/cr900228f
http://dx.doi.org/10.1021/cr900228f
http://dx.doi.org/10.1021/ja107033v
http://dx.doi.org/10.1021/ja107033v
http://dx.doi.org/10.1002/anie.200905621
http://dx.doi.org/10.1002/anie.200701522
http://dx.doi.org/10.1002/anie.200701522
http://dx.doi.org/10.1016/j.ccr.2010.09.002
http://dx.doi.org/10.1016/j.ccr.2010.09.002
http://dx.doi.org/10.1038/nchem.982


Polaron Dynamics on the Nonlinear Lattice. . . 339

[7] P.T. Henderson, D. Jones, G. Hampikian, Y. Kan,
G.B. Schuster, Proc. Natl. Acad. Sci. USA 96,
8353 (1999).

[8] M. Nunez, D.B. Hall, J.K. Barton, Chem. Biol. 6,
85 (1999).

[9] M. Cordes, B. Giese, Chem. Soc. Rev. 38, 892
(2009).

[10] T.Yu. Astakhova, V.N. Likhachev, G.A. Vinogradov,
Russ. Chem. Rev. 81, 994 (2012).

[11] V.D. Lakhno, Int. J. Quant. Chem. 110, 127 (2010).
[12] E.M. Conwell, S.V. Rakhmanova, Proc. Natl. Acad.

Sci. USA 97, 4556 (2000).
[13] S.V. Rakhmanova, E.M. Conwell, J. Phys. Chem. B

105, 2056 (2001).
[14] E.M. Conwell, D.M. Basko, J. Am. Chem. Soc. 123,

11441 (2001).
[15] E.M. Conwell, J.-H. Park, H.-Y. Choi, J. Phys.

Chem. B 109, 9760 (2005).
[16] E.M. Conwell, P.M. McLaughlin, S.M. Bloch, J.

Phys. Chem. B 112, 2268 (2008).
[17] G. Zhang, H. Hu, S. Cui, Z. Lv, Physica B 405, 4382

(2010).
[18] G. Zhang, P. Cui, J. Wu, C. Liu, Physica B 404,

1485 (2009).
[19] J.H. Wei, X.J. Liu, J. Berakdar, Y. Yan, J. Chem.

Phys. 128, 165101 (2008).
[20] V.D. Lakhno, N.S. Fialko, Regul. Chaotic Dyn. 7,

299 (2002).
[21] V.D. Lakhno, N.S. Fialko, Eur. Phys. J. B 43, 279

(2005).
[22] J.C. Slater, G.F. Koster, Phys. Rev. 94, 1498 (1954).

[23] W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev.
Lett. 42, 1698 (1979).

[24] W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. B
22, 2099 (1980).

[25] D.K. Campbell, A.R. Bishop, Nucl. Phys. B 200,
297 (1982).

[26] A.S. Carstea, Chaos Solitons Fractals 42, 923 (2009).
[27] L. Li, E. Li, M. Wang, Appl. Math. J. Chin. Univ.

25, 454 (2010).
[28] T.Yu. Astakhova, V.N. Likhachev, G.A. Vinigradov,

Russ. J. Phys. Chem. B 7, 521 (2013).
[29] L. Cruzeiro, J. Biol. Phys. 35, 43 (2009).
[30] A.V. Zolotaryuk, K.H. Spatschek, A.V. Savin, Phys.

Rev. B 54, 266 (1996).
[31] G. Kalosakas, S. Aubry, G.P. Tsironis, Phys. Rev. B

58, 3094 (1998).
[32] S. Zekovic, S. Zdravkovic, Z. Ivic, J. Phys. Conf.

Ser. 329, 012015 (2011).
[33] L.G.D. Hawke, G. Kalosakas, C. Simserides, Eur.

Phys. J. E 032, 291 (2010).
[34] T. Dauxious, M.Peyrard, Physics of Solitons, Cam-

bridge University Press, Cambridge (UK) 2006.
[35] J.A.D. Wattis, Physica D 82, 333 (1995).
[36] J.A.D. Wattis, Nonlinearity 9, 1583 (1996).
[37] M.G. Velarde, J. Comput. Appl. Math. 233, 1432

(2010).
[38] O.G. Cantu Ros, L. Cruzeiro, M.G. Velarde, W. Ebel-

ing, Eur. Phys. J. B 80, 545 (2011).
[39] T.Yu. Astakhova, V.A. Kashin, V.N. Likhachev,

G.A. Vinogradov, J. Phys. Conf. Ser. 574, 012166
(2015).

http://dx.doi.org/10.1016/S1074-5521(99)80005-2
http://dx.doi.org/10.1016/S1074-5521(99)80005-2
http://dx.doi.org/10.1039/B805743P
http://dx.doi.org/10.1039/B805743P
http://dx.doi.org/10.1002/qua.22264
http://dx.doi.org/10.1021/jp0036285
http://dx.doi.org/10.1021/jp0036285
http://dx.doi.org/10.1021/ja015947v
http://dx.doi.org/10.1021/ja015947v
http://dx.doi.org/10.1021/jp044485f
http://dx.doi.org/10.1021/jp044485f
http://dx.doi.org/10.1021/jp077344x
http://dx.doi.org/10.1021/jp077344x
http://dx.doi.org/10.1016/j.physb.2010.07.047
http://dx.doi.org/10.1016/j.physb.2010.07.047
http://dx.doi.org/10.1016/j.physb.2009.01.004
http://dx.doi.org/10.1016/j.physb.2009.01.004
http://dx.doi.org/10.1063/1.2902279
http://dx.doi.org/10.1063/1.2902279
http://dx.doi.org/10.1070/RD2002v007n03ABEH000212
http://dx.doi.org/10.1070/RD2002v007n03ABEH000212
http://dx.doi.org/10.1140/epjb/e2005-00049-y
http://dx.doi.org/10.1140/epjb/e2005-00049-y
http://dx.doi.org/10.1103/PhysRev.94.1498
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevB.22.2099
http://dx.doi.org/10.1103/PhysRevB.22.2099
http://dx.doi.org/10.1016/0550-3213(82)90089-X
http://dx.doi.org/10.1016/0550-3213(82)90089-X
http://dx.doi.org/10.1016/j.chaos.2009.02.034
http://dx.doi.org/10.1007/s11766-010-2128-x
http://dx.doi.org/10.1007/s11766-010-2128-x
http://dx.doi.org/10.1134/S199079311305028X
http://dx.doi.org/10.1007/s10867-009-9129-0
http://dx.doi.org/10.1103/PhysRevB.54.266
http://dx.doi.org/10.1103/PhysRevB.54.266
http://dx.doi.org/10.1103/PhysRevB.58.3094
http://dx.doi.org/10.1103/PhysRevB.58.3094
http://dx.doi.org/10.1088/1742-6596/329/1/012015
http://dx.doi.org/10.1088/1742-6596/329/1/012015
http://dx.doi.org/10.1140/epje/i2010-10650-y
http://dx.doi.org/10.1140/epje/i2010-10650-y
http://dx.doi.org/10.1016/0167-2789(94)00245-L
http://dx.doi.org/10.1088/0951-7715/9/6/011
http://dx.doi.org/10.1016/j.cam.2008.07.058
http://dx.doi.org/10.1016/j.cam.2008.07.058
http://dx.doi.org/10.1140/epjb/e2011-10880-0
http://dx.doi.org/10.1088/1742-6596/574/1/012166
http://dx.doi.org/10.1088/1742-6596/574/1/012166

