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In nanomagnetism, the studies of magnetic nanoparticle systems are of particular interest from both exper-
imental and theoretical points of view. Experimentally, the measurements made on such a system are hard to
interpret. It is very difficult to distinguish the effect of the magnetic dipole interactions from the effects of size
distribution or effective magnetic anisotropy constants. In this respect, the simulation models can help. This paper
presents a study comparing the two conventional approaches, using simulation models for the magnetic relaxation
dynamics of nanoparticle systems, i.e. a phenomenological Ising-type approach, on two levels, and a stochastic
approach. The paper also shows a way of using these approaches in creating a model to simulate the Néel magnetic
relaxation time for aligned magnetic nanoparticle systems.
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1. Introduction

The nanoparticle magnetic system [1, 2] is expected
to become one of the most versatile tools in biotech-
nology, biomedical, material science, and engineering [3–
5], having a number of important applications, such as
magnetic fluid hyperthermia for cancer treatment [6–9],
magnetic resonance imaging, drug targeting, biomark-
ers, biosensors and separation of biomolecules [2, 10, 11],
and ultra-high density magnetic data storage devices [12].
Most applications are using external high frequency al-
ternating magnetic field. The nanoparticles are randomly
distributed in a given volume, their sizes and effective
anisotropy constants have distributions and, in general,
we may take into account the dipolar magnetic interac-
tions. In these systems, the dynamics of nanoparticles is
characterized by the Néel relaxation time and Brownian
relaxation time, given that the nanoparticles are in sus-
pension in a liquid base. Due to the complexity of these
systems, the studies are using modelling and numerical
simulations which require certain methods of calculation.
Therefore, the magnetic relaxation dynamics in nanopar-
ticle systems represents a topic of interest in the recent
decades. There are a lot of models with many approxi-
mations, trying to provide solutions, but which lead to
more or less controversial results.

The string of models started with the work of Néel [13],
for nanoparticles that do not interact, and continued with
Brown’s concerns [14] and attempts to find a solution to
the Fokker–Planck equation for the orientation probabil-
ity density of the nanoparticle magnetic moment, as a
starting point for the relaxation time calculation.
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The first attempt to introduce the interactions into
the Néel–Brown model was made by Shtrikmann and
Wohlfarth who, by using a mean field approximation,
predicted a Vogel–Fulcher law for the relaxation time
in the weak interaction limit [15]. A more general ap-
proach was developed by Dormann et al. [16], and Hansen
and Mørup [17]. Both models took into account the
dipole–dipole interaction, but achieved conflicting re-
sults. To these models, we can add many studies carried
out using the Monte Carlo stochastic methods [18–20],
or the numerical solution of the Landau–Lifshitz–Gilbert
stochastic differential equation (LLG equation) [21], or
rigorous analytical models [22, 23]. Unfortunately, they
could offer only approximate solutions, or solutions for
weak magnetic dipole interactions. In many of these
models, we can find stochastic or phenomenological ap-
proaches. For example, one of the most updated mod-
els, based on the KMC method (kinetic Monte Carlo
method), uses a stochastic approach [20]. Thus, for ef-
fective local magnetic fields of particles whose density
is lower than a critical value, there are two equilib-
rium nanoparticle states, “+” and “−”, and the proba-
bility of a nanoparticle to switch between these states is
Pi = 1 − exp(−t/τi). The relaxation time constant τi
is a reciprocal sum of the transition rates τ+

i and τ−i ,
dependent on the energy barriers ∆E±i , seen from the
“+” and “−” states via the standard Néel–Arrhenius law:
τ±i = τ0 exp

(
∆E±i /kBT

)
, where kB is the Boltzmann

constant, and T is the temperature [20].
Further, we could find an interesting study comparing

the two approaches found in various models for the mag-
netic relaxation dynamics in nanoparticle systems, i.e.
a phenomenological approach of the Ising type, on two
levels, and a stochastic approach. These approaches can
be considered in aligned magnetic nanoparticle systems.
These approaches may take into account distributions
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of sizes and effective magnetic anisotropy constants, geo-
metric distribution of the nanoparticles in a given volume
and dipolar magnetic interactions, characteristics specific
to the real systems. Thus, we can work locally, at the
level of particle, with mediation for the physical quanti-
ties of interest.

2. Local magnetic field
in case of aligned magnetic nanoparticle system

In case of oriented nanoparticles, if we take into ac-
count the nanoparticle interactions, we can consider that
the local magnetic field over the given i nanoparticle is
made of two contributions: the external magnetic field
acting along the easy magnetisation direction, Oz, and
the projection along the external field of the dipolar mag-
netic field created on the i nanoparticle due to the dipolar
magnetic interactions of the nanoparticles. The other
projections may be neglected, because they are small
compared with the projections in the direction of the
Oz axis

Hi = H +Hdz,i, (1)

H d,i =
1

4π

∑
j,j 6=i

µj
r3
ij

[3r̂ij · (µ̂j · r̂ij)− µ̂j ] , (2)

where rij is the distance between the centres of those two
nanoparticles, r̂ij is the unit vector of the direction that
connects the i and j nanoparticles, µ̂i and µ̂j are the unit
vectors of the magnetic moments of the i and j nanopar-
ticles, respectively, and µj is the magnetic moment of the
j nanoparticle.

3. Phenomenological approach
for the dynamics of magnetic relaxation

in nanoparticle systems

We consider the case of aligned magnetic nanoparti-
cle system, randomly distributed in a given volume in
an external high frequency alternating magnetic field.
We start from the idea of an Ising 2-level model [24] of a
spherical nanoparticle system. Some aspects, as the dis-
tribution of diameters, effective magnetic anisotropy con-
stants and the three-dimensional geometry can be dealt
by numerical simulation [25].

The energy of an i nanoparticle of the system in theHi

local magnetic field, oriented along its easy magnetisation
axis, is

Ei = −µ0Mp,iHi cos θi −Keff,ivi cos2 θi, (3)

where vi =
πd3i
6 , θi being the angle made by the direction

of the i nanoparticle magnetic moment (Mp,i) with the
direction of the easy magnetisation axis, along which the
external magnetic field is acting. Keff,i is the effective
anisotropy constant of the nanoparticle, and vi is the
magnetic core volume of the nanonanoparticle.

Please note that the sizes of nanoparticles and
their effective magnetic anisotropy constants may have
distributions.

In these conditions, the minimum energy determines
the equilibrium properties of the particle, as they corre-
spond to the stable magnetisation directions. The min-
imum energy (3) must satisfy the two simultaneous
conditions

∂Ei(θi)

∂θi
= 0,

∂2Ei(θi)

∂θ2
i

> 0. (4)

A simple mathematical calculation shows that the Mp,i

magnetic moment of a given i nanoparticle can be in one
of the two equilibrium states, with the minimum ener-
gies Eimin 1 and Eimin 2 determined by θi = 0 and θi = π,
separated by the barrier height Eimax.

In the presence of thermal fluctuations, the magnetic
moment of an i nanoparticle in a stable state, with the
minimum energy Eimin 1, can spontaneously change its di-
rection to the minimum energy state Eimin 2. The energy
barriers for these re-orientations are

Eib12 = Eimax − Eimin 1, (5)

Eib21 = Eimax − Eimin 2. (6)
We consider that the system is in thermal equilib-
rium and has N nanoparticles. The average number of
nanoparticles passing in time unit from a minimum to
another minimum is proportional with Nk exp

(
− Ebk

kBT

)
,

where kB is the Boltzmann constant, and T is the temper-
ature. If N1 is the average number of nanoparticles in the
state with minimum average energy 〈Emin 1〉 and N2 is
the number of nanoparticles in the minimum average en-
ergy 〈Emin 2〉, then the equilibrium condition shall be

N1 exp

(
−〈Eb12〉

kBT

)
= N2 exp

(
−〈Eb21〉

kBT

)
, (7)

where 〈Eb12〉 and 〈Eb21〉 are the average energy barriers.

Near-equilibrium, the total magnetic moment of the
system, in a given moment, is proportional with the dif-
ference N1 − N2. Within an infinitesimal time period,
the n difference becomes

∂n

∂t
= f0

[
N1 exp

(
−〈Eb12〉

kBT

)
−N2 exp

(
−〈Eb21〉

kBT

)]
, (8)

where f0 is a factor measured in s−1.

Having in view the relations between N1, N2 and n,
we can write

N1 =
N + n

2
, and N2 =

N − n
2

. (9)

After applying a simple calculation artifice

exp

(
−〈Eb12〉

kBT

)
= exp

(
−〈Eb12〉 − 〈Eb21〉

2kBT

)
× exp

(
−〈Eb12〉+ 〈Eb21〉

2kBT

)
, (10)

exp

(
−〈Eb21〉

kBT

)
= exp

(
〈Eb12〉 − 〈Eb21〉

2kBT

)
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× exp

(
−〈Eb12〉+ 〈Eb21〉

2kBT

)
. (11)

With the relations (9), (10) and (11), Eq. (8) becomes
∂n

∂t
= −f0 exp

(
−〈Eb12〉+ 〈Eb21〉

2kBT

)
×
[
n cosh

(
〈Eb12〉 − 〈Eb21〉

2kBT

)
+N sinh

(
〈Eb12〉 − 〈Eb21〉

2kBT

)]
. (12)

Generally, the magnetic relaxation process of the system
is governed by such an equation

∂M

∂t
∼= −f0 exp

(
−〈Eb12〉+ 〈Eb21〉

2kBT

)
×
[
M cosh

(
〈Eb12〉 − 〈Eb21〉

2kBT

)
+Msat sinh

(
〈Eb12〉 − 〈Eb21〉

2kBT

)]
, (13)

whereMsat is the saturation magnetisation (i.e. the mag-
netisation of the nanoparticle assembly when all the
nanoparticles are aligned along the direction of the exter-
nal magnetic field), M being the total magnetic moment
of the system.

Very close to equilibrium, Eq. (13) becomes
∂M

∂t
∼= −2f0M exp

(
−〈Eb12〉+ 〈Eb21〉

2kBT

)
× cosh

(
〈Eb12〉 − 〈Eb21〉

2kBT

)
. (14)

We consider 〈Eb〉 = 〈Eb12〉+〈Eb21〉
2 , which represents

the effective energy barrier. With this notation,
Eq. (14) will be

∂M

∂t
∼= −2f0M exp

(
−〈Eb〉
kBT

)
× cosh

(
〈Eb12〉 − 〈Eb21〉

2kBT

)
. (15)

The solution of the differential Eq. (15) gives the evolu-
tion equation for the residual magnetisation of the system
which, for H = constant during the relaxation, is

M(t) ∼= M(0) exp

[
−2tf0M exp

(
−〈Eb〉
kBT

)
× cosh

(
〈Eb12〉 − 〈Eb21〉

2kBT

)]
, (16)

whereM(0) is the system magnetisation at the beginning
of the relaxation process.

In the following relation, we use the notation
τ0 = 1/f0,

τN =
τ0 exp

(
〈Eb〉
kBT

)
2 cosh

(
〈Eb12〉−〈Eb21〉

2kBT

) , (17)

τN being the Néel relaxation time.

4. Stochastic approach for the magnetic
relaxation dynamics in nanoparticle systems

The starting point for calculation of the relaxation time
is the Fokker–Planck equation [26]. This equation was
solved by Brown [27] in case of high and low energy bar-
rier. In the intermediate region, there is no analytical
solution. In the Fokker–Planck equation the orientation
of magnetization takes continuum values but in practice
calculations, in base of real experimental systems, mag-
netization spends most time in orientations near to the
local minima of the energy so it is possible to treat the
Fokker–Planck equation in the discrete orientation ap-
proximation [28].

The discrete orientation approximation assumes that
the magnetic moment rotation due to the thermal fluc-
tuations can be modelled through the equation of proba-
bility, for finding the magnetic moments of the particles
at the t moment, in the i equilibrium state (i = 1, 2) [29].
Under the same assumptions and using the same nota-
tions as in the previous paragraph, the situation is illus-
trated in Fig. 1.

Fig. 1. The average energy state of the nanoparticle
system.

Let P1(t) be the probability of finding particles in
state 1 at the moment t, and P2(t) the probability of
finding particles in state 2 at the moment t. Let us de-
note with ν12 the probability of transition, in time unit,
from the state 1 into state 2, passing through the maxi-
mum, and with ν21 the probability of transition, in time
unit, from the state 2 into state 1, passing also through
the maximum. With these notations, we obtain [29, 30]:

dP1

dt
= ν21P2 (t)− ν12P1 (t) , (18)

provided that the normalisation condition
P1 (t) + P2 (t) = 1, (19)

νij =
1

τij
=

1

τ0
exp

(
−〈Ebij〉
kBT

)
, (20)

with f0 = τ−1
0 = attempt frequency (which can be ex-

perimentally determined for each system).
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At thermal equilibrium [30]:
νT

21

νT
12

= exp

(
− ε

kBT

)
, with ε= 〈Emin 1〉− 〈Emin 2〉 . (21)

Considering the normalisation condition (19), the solu-
tion of Eq. (18) is

P1 (t) =
νT

21

νT
− νT

12

νT
exp

(
−tνT

)
, (22)

with
νT = νT

12 + νT
21. (23)

By inserting the relations (20) and (21) into (22), we
obtain

P1(t) =
1− exp

(
ε

kBT

)
exp

(
− t
τN

)
1 + exp

(
ε

kBT

) , (24)

P2(t) =
exp

(
ε

kBT

) [
1 + exp

(
− t
τN

)]
1 + exp

(
ε

kBT

) . (25)

In Eqs. (24) and (25), τN has the significance of average
Néel relaxation time

τ−1
N = νT =

∑
i 6=j

1

τij
=

1

τ12
+

1

τ21
= νT

12 + νT
21 =

νT
21 exp

(
ε

kBT

)
+ νT

21 = νT
21

[
1 + exp

(
ε

kBT

)]
=

1

τ0
exp

(
−〈Eb21〉

kBT

)[
1 + exp

(
ε

kBT

)]
, (26)

or, by using the second equation:

τ−1
N =

1

τ12
+

1

τ21
=

1

τ0

[
exp

(
−〈Eb21〉

kBT

)
+ exp

(
−〈Eb12〉

kBT

)]
. (27)

Taking into account Eqs. (10) and (11), Eq. (27) can be
brought to the form

τ−1
N =

1

τ0
exp

(
−〈Eb12〉+ 〈Eb21〉

2kBT

)
(28)

×
[
exp

(
〈Eb12〉 − 〈Eb21〉

2kBT

)
+ exp

(
−〈Eb12〉 − 〈Eb21〉

2kBT

)]
.

Having in view that exp(x) + exp(−x) = 2 cosh(x), we
obtain

1

τN
=

1

τ0
2 exp

(
−〈Eb12〉+ 〈Eb21〉

2kBT

)
× cosh

(
〈Eb12〉 − 〈Eb21〉

2kBT

)
, (29)

τN =
τ0 exp

(
〈Eb〉
kBT

)
2 cosh

(
〈Eb12〉−〈Eb21〉

2kBT

) . (30)

If we compare the result obtained through the stochas-
tic approach — relation (30) — with the result obtained
when using the phenomenological model — relation (16),
we can easily see that they are practically identical. Both
approximations treat the case close to equilibrium.

5. Results and discussions

In this paper, we discussed about two approaches (phe-
nomenological and stochastic) regarding the Néel relax-
ation time, approaches used in the multitude of simu-
lation models found in literature, approaches that have
led to the same result. These approaches are appropri-
ate for aligned magnetic nanoparticle systems in alter-
native magnetic fields (as in case of ultra-high density
magnetic data storage devices), although they are fre-
quently used in the literature also in the case when the
magnetic anisotropy axes of the nanoparticles have a ran-
dom orientation.

Given that the measurements carried out experimen-
tally on a nanoparticle magnetic system are very diffi-
cult to interpret, because of overlapping of various effects
that cannot be separated one from each other, the devel-
opment of more reliable models to study these systems
provides the understanding of phenomena at nanoscopic
level, which is a vital understanding for obtaining a
certain control of the system behaviour in the various
applications.

To show how these approaches can be integrated into
a model, we consider a magnetite nanoparticle system
aligned in a solid non-magnetic matrix, under the ac-
tion of an external alternating magnetic field with high
frequency and given amplitude, applied in the direc-
tion of the aligned anisotropy axes. The nanoparti-
cle positions are random in a given volume, accord-
ing to the nanoparticle volume fraction. We consid-
ered spherical uncoated magnetite nanoparticles having
the density of 5180 kg/m3 [31], saturation magnetisa-
tion Ms = 4.46 × 105 A/m [31], and uniaxial magnetic
anisotropy with the average effective magnetic anisotropy
constant Keff = 25 × 103 J/m3 [31]. The analysed sys-
tems contained nanoparticles having the volume fraction
f = 0.1 and average diameters = 10 nm at the tempera-
ture T = 293 K. The external magnetic field taken into
account had the amplitude of 150 kA/m. The local mag-
netic field acting on the i-th nanoparticle was calculated
using direct summation. In many papers, the attempt
frequency is considered to be f0 = 109 s−1 [32], or to fall
within various ranges, such as (1013–109) s−1 [33], and
to depend only on the material properties. We consid-
ered that the nanoparticle sizes and effective magnetic
anisotropy constants had a lognormal distribution, the
standard shape deviations were vd dm and vKeffKeff,m,
i.e. vd and vKeff are standard deviation parameters, dm —
the average particle diameter andKeff,m — their effective
magnetic anisotropy constant.

The extended theoretical predictions developed in the
previous sections led to the same final result, Eq. (30),
which is the basis of our simulation. For each nanoparti-
cle, we calculate the energy barriers Eib12 and Eib21. Fig-
ure 2 shows the histograms of energy barriers for a system
consisting of 5000 nanoparticles, having the above men-
tioned properties, with distribution of effective magnetic
anisotropy constants (vKeff = 0.1) and size distribution
(vd = 0.1).
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Fig. 2. Histograms of energy barriers for a system con-
sisting of 5000 magnetite nanoparticles, with distribu-
tion of sizes and effective magnetic anisotropy constants.

Then, we calculate the average energy barriers 〈Eb12〉,
〈Eb21〉 and 〈Eb〉. In the examined case, 〈Eb12〉 =
1.3824 × 10−20 J, 〈Eb21〉 = 1.3217 × 10−20 J, and
〈Eb〉 = 1.35205 × 10−20 J. Then, based on the rela-
tion (30), we calculate the Néel relaxation time. In this
case, tN = 3.3065× 10−9 s.

Fig. 3. Average Néel relaxation time versus standard
deviation parameter of the distributions.

Figure 3 shows the average Néel relaxation time ver-
sus the standard deviation parameter of size and effec-
tive magnetic anisotropy constant distributions. When
studying the contribution of size distribution, we main-
tain the value of the effective magnetic anisotropy con-
stant, and vice versa. We can see that the size distribu-
tion is strongly influenced by the Néel relaxation time.
The average Néel relaxation time increases slightly with
increasing standard deviation parameter of the effective
magnetic anisotropy constant distribution. In this way,
one can distinctively study the influence of physical pa-
rameters affecting the magnetic relaxation.

Figure 4 shows the average Néel relaxation time versus
the volume fraction of nanoparticles for the system con-
sisting of 5000 magnetite nanoparticles, firstly examined
in terms of size distribution, then in terms of effective

Fig. 4. Néel relaxation time versus the volume fraction
of nanoparticles.

magnetic anisotropy constant distribution, and then by
taking into account the case when the effective magnetic
anisotropy constant distribution is superimposed over the
size distribution. In all three cases, it can be noticed a
decrease in Néel relaxation time with increasing volume
fraction of nanoparticles. This behaviour is confirmed by
the scientific literature, in theoretical as well as experi-
mental works [34, 35]. This happens because the local
magnetic field increases and the energy barriers decrease
with increasing concentration.

6. Conclusions

In this paper, by two different routes with respect
to the dynamics of the magnetic moments of a system
of magnetic nanoparticles with magnetic dipole interac-
tions, a phenomenological route and a stochastic one, we
obtained the same result, i.e. the same relation express-
ing the average Néel relaxation time related to the sys-
tem. Therefore, there are two methods to investigate the
dynamics of the magnetic moments in aligned magnetic
nanoparticle systems with magnetic dipole interactions,
methods that lead to the same results, which are impor-
tant to highlight. The paper also shows a modality to
use these approaches for creating a model to simulate
the average Néel relaxation time for aligned magnetic
nanoparticle systems, and a modality to study the influ-
ence of various physical parameters that characterise the
dynamic behaviour of the system.
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