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1. Introduction

The theory of nonlinear evolution equations (NLEEs)
is one of the key issues in applied and theoretical physics
as well as in engineering sciences and applied mathe-
matics. These NLEEs appear in fluid dynamics, nonlin-
ear optics, plasma physics, nuclear physics, mathemat-
ical biosciences, and several others [1–11]. Integrabil-
ity aspect is one of the main focus areas of research for
these NLEEs. There are several integration tools that
are proposed and successfully applied to handle NLEEs
during the past couple of decades. Some of these tools
are Adomian decomposition method, G′/G-expansion
method, exp-method, the Lie symmetry analysis, the
Riccati equation approach, simplest equation method,
the Kudryashov method and several others [4, 6, 7, 9].
These techniques are well beyond the classical inverse
scattering transform (IST) that has very limited applica-
tions [12–14]. Once upon a time, IST was a monopoly to
study NLEEs and it was applicable only to those NLEEs
which passed the Painleve test of integrability. However,
these current tools are applicable even to equations which
fail the Painleve test. Thanks to these modern methods
of integrability that widens the scope of integration for
such NLEEs.

While this paper addresses complex-valued NLEEs,
there are several real-valued NLEEs that exist in the
literature. Those results are reported and have ex-
hausted the literature. Some of these are the well
known Korteweg–de Vries (KdV) equation, the Boussi-
nesq equation, the Kawahara equation, the Benjamin–
Bona–Mahoney equation, the Peregrine equation, regu-
larized long wave (RLW) equation and others. These
models study shallow water wave flow along lake-shores
and sea beaches. Besides them, there are additional mod-
els in real domain that describe these features such as the
Rosenau–KdV equation, the Rosenau–Kawahara equa-
tion, the Rosenau–KdV–RLW equation. These model

dispersive shallow water wave dynamics. Finally, coupled
NLEEs such as the Bona–Chen equation and Gear–
Grimshaw model study two-layered shallow water waves.

This paper focuses on vector coupled complex-valued
NLEEs that are applicable in several physical situations.
One such model is the Davey–Stewartson equation that
describes the evolution of three-dimensional wave packet
on water of finite depth. Another one is vector coupled
nonlinear Schrödinger’s equation that is studied in bire-
fringent fibers, optical couplers as well as in dense wave-
length division multiplexed (DWDM) system. This pa-
per will, however, focus on the Schrödinger–Boussinesq
equation, the Higgs field equation and the Maccari equa-
tion. The following subsection introduces these models
in a very succinct manner. Subsequently the integration
algorithm, employed in this paper, will be reviewed and
finally it will be applied to the three models.

1.1. Complex-valued coupled NLEEs
The generalized complex coupled Schrödinger–

Boussinesq equations study the stationary propagation
of coupled nonlinear upper-hybrid and magnetosonic
waves in magnetized plasmas [15–21]. The complex
coupled generalized Schrödinger–Boussinesq equation
can be written as

iut + uxx + αu = uv,

3vtt − vxxxx + 3
(
v2
)
xx

+ βvxx =
(
|u|2
)
xx
. (1)

The complex coupled Higgs field equation introduces
quantum field (or the Higgs field) to illustrate the
generation mechanism of mass for gauge bosons [15, 21]
can be written in the form

utt − uxx − αu+ β |u|2 u− 2uv = 0

vtt + vxx − β
(
|u|2
)
xx

= 0, (2)

where v and u represent complex scalar nucleon field
and scalar meson field, respectively.
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The complex coupled Maccari equations is a nonlinear
evolution equations described the motion of the isolated
waves, localized in a small part of space, in many fields
such as hydrodynamic, plasma physics, nonlinear optics
and others [22–28]. Complex coupled Maccari equation
derived from the Kadomtsev–Petviashvili equation (the
best known two-dimensional generalizations of the KdV
equation) and can be written in the form

iut + uxx + uv = 0,

vt + vy +
(
|u|2
)
x
= 0, (3)

which is called integrable (2 + 1)-dimensional nonlinear
Maccari system [23].

2. Recapitulation of generalized tanh method

In this section, the method will be described briefly.
Consider the given NLEEs

G(u, ux, uy, ut, uxy, ...) = 0. (4)
The first step is to unite the independent variables x, y
and t into one particular variable through the definition

ζ = x+ αy + βt, u(x, y, t) = U(ζ),

and Eq. (4) will be changed into the ordinary differential
equation (ODE):

G(U,U
′
, U

′′
, U

′′′
, ...) = 0. (5)

Our aim is to obtain exact solutions, if possible, for this
ODE. To this end, we propose a new variable

ψ = ψ(ζ),

which is an exact solution of the Riccati equation
ψ

′
= k + ψ2. (6)

Let the following series expansion is a solution of Eq. (4):

u(x, y, t) = U(ζ) =

m∑
i=0

aiψ
i. (7)

We can evaluate m by balancing the highest order of the
linear term(s) with highest order of the nonlinear one(s).
Normally m is a positive integer, so that an analytic so-
lution in closed form may be obtained. Substituting (6)
into (7) and comparing the coefficients of each power of ψ
in both sides, an over-determined system of nonlinear al-
gebraic equations in terms of to k, a0, a1 . . . is obtained.
One may find the solution of this over-determined sys-
tem e.g. by means of symbolic computation program, say
MATHEMATICA. We can obtain several exact solutions:
(i) for k < 0

ψ =

{
−
√
−k coth(

√
−kζ),

−
√
−k tanh(

√
−kζ),

(8)

(ii) for k = 0

ψ =
−1
ζ + c

, (9)

(iii) for k > 0

ψ =

{
−
√
k cot(

√
kζ),√

k tan(
√
kζ).

(10)

Another advantage of the Riccati Eq. (6) is that the sign
of k can be used to exactly judge the amount and types
of traveling wave solution of Eq. (4).

3. Applications
Applications of this integration algorithm is

widespread as seen in various journals and books.
This paper will apply the tool to a few specific type
of NLEEs. These are complex-valued coupled NLEEs
which are applicable to various areas of applied and
theoretical physics. The detailed discussions are in the
next three subsections.

3.1. Higgs field equation
We first consider the complex coupled Higgs field

equation
utt − uxx − αu+ β|u|2u− 2uv = 0,

vtt + vxx − β(|u|2)xx = 0, (11)
using the transformations

u(x, t) = e iθU(ζ), v(x, t) = V (ζ),

ζ = x+ νt, θ = px+ rt, (12)
we obtain the relation p = rν and carry Eq. (11) into the
system of ordinary differential equations (SODEs):

(ν2 − 1)U
′′
+ (p2 − r2 − α)U + βU3 − 2UV = 0,

(ν2 + 1)V
′′
− 2β(U

′
)2 − 2βUU

′′
= 0, (13)

integrating the second equation in Eq. (11) twice gives
(ν2 + 1)V = βU2. (14)

Using Eq. (14) into Eq. (11), yields only one ODE:

(ν2 − 1)(ν2 + 1)U
′′
+ (p2 − r2 − α)U

+β(ν2 − 1)U3 = 0. (15)
Balancing the term U

′′
with the term U3 we obtainm = 1

then

U(ζ) =

1∑
i=0

aiψ
i = a0 + a1ψ, (16)

substituting Eq. (16) into Eq. (15) and comparing the co-
efficients of each power of ψ in both sides, we get an over-
determined system of nonlinear algebraic equations with
respect to ν, ai; i = 0, 1. Solving the over-determined
system of nonlinear algebraic equations using of MATH-
EMATICA, we obtain

a0 = 0, a1 = ± i
√
2(1 + ν2)/β

and k =
r2(1− ν2) + α

2(ν2 − 1)
, (17)

we find the following solutions of Eq. (15):
[i.] for k < 0

U1,2 = ± i

√
2(1 + ν2)(r2(1− ν2) + α)

2β(1− ν2)

× coth

(√
r2(1− ν2) + α

2(1− ν2)
ζ

)
,
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U3,4 = ± i

√
2(1 + ν2)(r2(1− ν2) + α)

2β(1− ν2)

× tanh

(√
r2(1− ν2) + α

2(1− ν2)
ζ

)
, (18)

[ii.] for k = 0

U5,6 =
± i
√
2(1 + ν2)/β

ζ
, (19)

[iii.] for k > 0

U7,8 = ± i

√
2(1 + ν2)(r2(1− ν2) + α)

2β(ν2 − 1)

× cot

(√
r2(1− ν2) + α

2(ν2 − 1)
ζ

)
,

U9,10 = ± i

√
2(1 + ν2)(r2(1− ν2) + α)

2β(ν2 − 1)

× tan

(√
r2(1− ν2) + α

2(ν2 − 1)
ζ

)
. (20)

Then the solutions of the complex coupled Higgs field
Eq. (11) are

u1,2 = ± i e i (rνx+rt)

√
2(1 + ν2)(r2(1− ν2) + α)

2β(1− ν2)

× coth

(√
r2(1− ν2) + α

2(1− ν2)
(x+ νt)

)
,

v1,2 =
2(1 + ν2)(r2(1− ν2) + α)

2β(ν2 − 1)

× coth2

(√
r2(1− ν2) + α

2(1− ν2)
(x+ νt)

)
, (21)

u3,4 = ± i e i (rνx+rt)

√
2(1 + ν2)(r2(1− ν2) + α)

2β(1− ν2)

× tanh

(√
r2(1− ν2) + α

2(1− ν2)
(x+ νt)

)
,

v3,4 =
2(1 + ν2)(r2(1− ν2) + α)

2β(ν2 − 1)

× tanh2

(√
r2(1− ν2) + α

2(1− ν2)
(x+ νt)

)
, (22)

u5,6 =
± i e i (rνx+rt)

√
2(1 + ν2)/β

(x+ νt)
,

v5,6 = − 2(1 + ν2)

β(x+ νt)2
, (23)

u7,8 = ± i e i (rνx+rt)

√
2(1 + ν2)(r2(1− ν2) + α)

2β(ν2 − 1)

× cot

(√
r2(1− ν2) + α

2(ν2 − 1)
(x+ νt)

)
,

v7,8 =
2(1 + ν2)(r2(1− ν2) + α)

2β(1− ν2)

× cot2

(√
r2(1− ν2) + α

2(ν2 − 1)
(x+ νt)

)
, (24)

u9,10 = ± i e i (rνx+rt)

√
2(1 + ν2)(r2(1− ν2) + α)

2β(ν2 − 1)

× tan

(√
r2(1− ν2) + α

2(ν2 − 1)
(x+ νt)

)
,

u9,10 =
2(1 + ν2)(r2(1− ν2) + α)

2β(1− ν2)

× tan2

(√
r2(1− ν2) + α

2(ν2 − 1)
(x+ νt)

)
. (25)

3.2. Schrödinger–Boussinesq equation

In this subsection, we present exact solutions for
complex coupled generalized Schrödinger–Boussinesq
equation

iut + uxx + αu = uv,

3vtt − vxxxx + 3(v2)xx + βvxx = (|u|2)xx, (26)
using the transformation

u(x, t) = e iθU(ζ), ζ = x+ νt, θ = px+ rt, (27)
then we obtain the relation ν = −2p and carry Eq. (26)
into the SODEs

(α− r − p2)U + U
′′
− UV = 0,

(β + 12p2)V
′′
+ (3V 2 − U2)

′′
− V (4) = 0, (28)

integrate the second equation in Eq. (28) twice we obtain

(α− r − p2)U + U
′′
− UV = 0,

(β + 12p2)V + (3V 2 − U2)− V
′′
= 0. (29)

Using the techniques in Sect. 2, we find

U(ζ) =

2∑
2=0

aiψ
i = a0 + a1ψ + a2ψ

2,

V (ζ) =

2∑
i=0

biψ
i = b0 + b1ψ + b2ψ

2. (30)

Proceeding as in the previous case we obtain different
four cases:
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[i.]

a1 = b1 = 0, b0 =
3

22
(12α− 12r + β),

k =
1

44
(12α− 12r + β), a0 =

36α− 36r + 3β

11
√
2

,

a2 = 6
√
2, b2 = 6 and p =

√
r − α− β

11
. (31)

[ii.]

a1 = b1 = 0, b0 =
7

54
(12α− 12r + β),

k =
1

36
(12α− 12r + β), a0 =

12α− 12r + β

3
√
2

,

a2 = ±6
√
2, b2 = 6 and p = ±1

3

√
α− r − 2β/3. (32)

[iii.]

a1 = b1 = 0, b0 =
−1
22

(12α− 12r + β),

k =
−1
44

(12α− 12r + β), a0 =
12r − 12α− β

11
√
2

,

a2 = 6
√
2, b2 = 6 and p =

√
r − α− β

11
. (33)

[iv.]

a1 = b1 = 0, b0 =
5

54
(12r − 12α− β),

k =
1

36
(12r − 12α− β), a0 =

12α− 12r + β

9
√
2

,

a2 = ±6
√
2, b2 = 6 and p = ±1

3

√
r − α− 2β/3

11
. (34)

From the first case we find five solutions of the com-
plex coupled generalized Schrödinger–Boussinesq system
Eq. (26) are

u1 = e i (
√

(r−α−β)/11 x+rt)

[
36α− 36r + 3β

11
√
2

(35)

−6
√

12r − 12α− β
22

coth

(√
12r − 12α− β

44

×

(
x− 2

√
r − α− β

11
t

))]
,

v1 =
36α− 36r + 3β

22
− 6

√
12r − 12α− β

444

× coth

(√
12r − 12α− β

44

(
x− 2

√
r − α− β

11
t

))
,

u2 = e i (
√

(r−α−β)/11 x+rt)

[
36α− 36r + 3β

11
√
2

(36)

−6
√

12r − 12α− β
22

tanh

(√
12r − 12α− β

44

×

(
x− 2

√
r − α− β

11
t

))]
,

v2 =
36α− 36r + 3β

22
− 6

√
12r − 12α− β

444

× tanh

(√
12r − 12α− β

44

(
x− 2

√
r − α− β

11
t

))
,

u3 = e i (
√

(r−α−β)/11 x+rt)

[
36α− 36r + 3β

11
√
2

− 6
√
2

x− 2
√
(r − α− β)/11 t

]
,

v3 =
36α− 36r + 3β

22
− 6

x− 2
√
(r − α− β)/11 t

, (37)

u4 = e i (
√

(r−α−β)/11 x+rt)

[
36α− 36r + 3β

11
√
2

(38)

−6
√

12α− 12r + β

22
cot

(√
12α− 12r + β

44

×

(
x− 2

√
r − α− β

11
t

))]
,

v4 =
36α− 36r + 3β

22
− 6

√
12α− 12r + β

44

× cot

(√
12α− 12r + β

44

(
x− 2

√
r − α− β

11
t

))
,

u5 = e i (
√

(r−α−β)/11 x+rt)

[
36α− 36r + 3β

11
√
2

(39)

+6

√
12α− 12r + β

22
tan

(√
12α− 12r + β

44

×

(
x− 2

√
r − α− β

11
t

))]
,

v5 =
36α− 36r + 3β

22
+ 6

√
12α− 12r + β

44

× tan

(√
12α− 12r + β

44

(
x− 2

√
r − α− β

11
t

))
.

The last three above cases given other fifteen solutions.

3.3. Maccari equation
The (2 + 1)-dimensional nonlinear complex coupled

Maccari equations are the second complex coupled
equations that will be discussed

iut + uxx + uv = 0, vt + vy + (|u|2)x = 0, (40)
using the transformations
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u(x, t) = e iθU(ζ), v(x, y, t) = V (ζ),

ζ = x+ y + νt, θ = px+ qy + rt, (41)
we obtain the relation ν = −2p and carry Eq. (40) into
the SODEs

(p2 + r)U − U
′′
− UV = 0,

(ν + 1)V
′
+ 2UU

′
= 0, (42)

if we integrate the second equation in Eq. (42) once, we
obtain

(ν + 1)V = U2, (43)
using Eq. (42) into (40), we obtain the following ODE:

(1− 2p)(p2 + r)U − (1− 2p)U
′′
+ U3 = 0. (44)

Based on the information included in Sect. 2, we obtain
a0 = 0, a1 = ±

√
2− 4p,

and k =
1 + (p2 + r)(1− 2p)

2− 4p
, (45)

consequently, one yields the solutions of Eq. (44): [i.]
for k < 0

U1,2 = ± i
√
1 + (p2 + r)(1− 2p)

× coth

(√
1 + (p2 + r)(1− 2p)

4p− 2
ζ

)
,

U3,4 = ± i
√
1 + (p2 + r)(1− 2p)

× tanh

(√
1 + (p2 + r)(1− 2p)

4p− 2
ζ

)
, (46)

[ii.] for k = 0

U5,6 =
±
√
2− 4p

ζ
, (47)

[iii.] for k > 0

U7,8 = ±
√

1 + (p2 + r)(1− 2p)

× cot

(√
1 + (p2 + r)(1− 2p)

2− 4p
ζ

)
,

U9,10 = ±
√
1 + (p2 + r)(1− 2p)

× tan

(√
1 + (p2 + r)(1− 2p)

2− 4p
ζ

)
. (48)

Then the solutions of (2 + 1)-dimensional nonlinear
complex coupled Maccari Eq. (40) are

u1,2 = ± i e i (px+qy+rt)
√
1 + (p2 + r)(1− 2p) (49)

× coth

(√
1 + (p2 + r)(1− 2p)

4p− 2
(x+ y − 2pt)

)
,

v1,2 =
1 + (p2 + r)(1− 2p)

1− 2p

× coth2

(√
1 + (p2 + r)(1− 2p)

4p− 2
(x+ y − 2pt)

)
,

u3,4 = ± i e i (px+qy+rt)
√
1 + (p2 + r)(1− 2p) (50)

× tanh

(√
1 + (p2 + r)(1− 2p)

4p− 2
(x+ y − 2pt)

)
,

v3,4 =
1 + (p2 + r)(1− 2p)

1− 2p

× tanh2

(√
1 + (p2 + r)(1− 2p)

4p− 2
(x+ y − 2pt)

)
,

u5,6 =
±e i (px+qy+rt)

√
2− 4p

(x+ y − 2pt)
,

v5,6 =
−2

(x+ y − 2pt)2
, (51)

u7,8 = ±e i (px+qy+rt)
√
1 + (p2 + r)(1− 2p) (52)

× cot

(√
1 + (p2 + r)(1− 2p)

2− 4p
(x+ y − 2pt)

)
,

v7,8 =
1 + (p2 + r)(1− 2p)

2p− 1

× cot2

(√
1 + (p2 + r)(1− 2p)

2− 4p
(x+ y − 2pt)

)
,

u9,10 = ±e i (px+qy+rt)
√
1 + (p2 + r)(1− 2p) (53)

× tan

(√
1 + (p2 + r)(1− 2p)

2− 4p
(x+ y − 2pt)

)
,

v9,10 =
1 + (p2 + r)(1− 2p)

2p− 1

× tan2

(√
1 + (p2 + r)(1− 2p)

2− 4p
(x+ y − 2pt)

)
.

4. Conclusions
We proposed a generalized tanh method for construct-

ing a range of exact solutions for three well-known non-
linear complex coupled equations. Compared with the
existing methods [26, 27], our method further exceeds
their applicability in obtaining a series of exact travel-
ling wave solutions. In this section, we compare with
some existing results:

• The solution (21) with positive sign are equivalent
to the solutions (4.21) and (48) in [26] and [27],
respectively.

• The solution (23) with positive sign are equivalent
to the solution (4.22) in [26].
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• The solution (46) with positive sign are equivalent
to the solutions (5.21) and (61) in [26] and [27],
respectively.

• The solution (47) with positive sign are equivalent
to the solution (5.22) in [26].

Therefore the solutions in [26] and [27] turn out to be
special cases of the results from this paper.

Later, this paper will be studied further along.
One avenue of additional investigation is the issue of
conservation laws. The Lie symmetry analysis with dou-
ble reduction will be implemented to dig out conserved
densities and soliton solutions will lead to conserved
quantities. Moreover, these three equations will be stud-
ied with fractional temporal evolution. This will lead to
further generalized solutions that will be an addendum to
the literature of NLEEs. These results will be reported
soon.
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