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Size effect for plasmon resonance in metallic nanoparticles has been studied by finite element method solution
of the Maxwell equations (COMSOL), by the Mie approach and microscopic random phase approximation model.
Comparison with Au, Ag nanoparticles experimental data for light extinction in colloidal solutions with different
particle sizes is presented for the three types of approach.
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1. Introduction

Optical properties of small metallic particles even with
complicated shape can be studied using numerical meth-
ods [1]. In the present report we compare the results ob-
tained by the finite element method utilizing COMSOL
system with the microscopic random phase approxima-
tion (RPA) modeling of surface plasmons and with the
Mie approach. Results are discussed with comparison to
experimental data for gold and silver nanoparticles.

2. RPA modeling of plasmons
in metallic particles

Upon the dipole approximation the optical response of
metallic nanosphere resolves itself to only dipole type sur-
face plasmon oscillations, which can be described by RPA
equation [2] of oscillatory form with damping caused by
electron scattering on other electrons, phonons, admix-
tures and on metallic nanoparticles (MNP) boundary
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τ0
=

vF
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CvF
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,

where λb is the electron mean free path in bulk metal
(including scattering of electrons on other electrons, im-
purities and phonons [3]) and C is the constant of unity
order. Electron density oscillations are the source of the
electromagnetic radiation, and thus the related energy
losses also contribute to plasmon attenuation. This ef-
fect can be expressed by the Lorentz friction effective
field

EL =
2

3c3
∂3D(t)

∂t3
,

D(t) — plasmon dipole. Upon the perturbation approx-
imation one can define the renormalized damping term
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including Lorentz friction [4]:
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The contribution to attenuation of plasmons caused by
the irradiation losses (upon the perturbation approach)
scales as a3, and therefore, for large nanospheres, the ra-
diative losses dominate plasmon damping. On the other
hand, for small nanospheres scattering type damping,
which scales as 1

a , is more important. One can ob-
serve thus the crossover is size dependence of damping
at ca. 12 nm for Au [4], as illustrated in Fig. 1.
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Fig. 1. Crossover in size dependence of surface plas-
mon damping in MNPs (Au nanoparticles in vacuum
and in water); right parts present the exact self-
frequency and damping rate according to Eq. (1).

The perturbation approach resulting in a3 growth of
plasmon damping is, however, not justified for radii
a > 30 nm (for Au in vacuum) and the exact form
of the Lorentz friction must be accounted for in large
MNP limit, as described in [5]. Exact solution of the dy-
namic equation with the Lorentz friction exhibit satura-
tion of the damping growth instead of the ∼ a3 increase,
as depicted in Fig. 1 (right). The connection between
the damping rate and the resonance frequency shift in
perturbative approximation is described by the damped
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oscillator-type formula

ω′1 =

√
ω2
1 −

1

τ2
,

where ω′1 is the shifted resonance frequency. Neverthe-
less, the perturbation approach is valid only for particle
radii lower than 30 nm (Au), and for larger radii neither
damping nor self-frequency is given by the above formu-
lae and the exact solutions differ significantly from the
approximated perturbation values. The analytical form
of the exact solution for the damping and self-frequency
including Lorentz friction is as follows [5] (the exponents
of solution ∼ e iΩt for self-modes):

Ω1 = − i
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√
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√
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. The functions

ω and 1
τ (in dimensionless units, i.e., divided by ω1) are

plotted in Fig. 1 (right) versus nanosphere radius a, for
illustration. Exact inclusion of the Lorentz friction indi-
cates that the radiative losses and the self-frequencies are
complicated function of particle radius as given by Eq. (1)
(by imaginary and real parts of Ω , correspondingly) and
damping can be approximated by simple ∼ a3 growth of
attenuation only in relatively narrow size window, e.g.,
ca. 12−30 nm for Au in vacuum [4, 5].

3. Numerical modeling
of plasmon resonances in MNP

The weak side of numerical solution of the Maxwell
equations consists in phenomenological assumption of the
dielectric function for MNP similarly as within the Mie
approach. The advantage of the COMSOL calculation is
its flexibility versus geometry and material setup. COM-
SOL (similarly as the Mie calculus) includes all multi-
pole contribution important for larger MNP beyond the
dipole approximation. For particles of size larger than
∼ 0.2 of incident light wavelength, the quadrupole mode
contributes. Figure 2 shows the comparison of optical
characteristics of three Au nanospheres with radii 20,
70, and 140 nm and extinction spectra for Au, Ag and
Cu nanospheres found by COMSOL. The influence of
nanosphere radii on the optical response is seen from the
extinction spectra where the contribution of multipoles
is noticeable.

The numerical COMSOL resonances were compared
with experimental resonances taken from extinction
spectra measured for colloidal solutions of metallic
nanospheres with various dimensions. The resonances

Fig. 2. Extinction spectra calculated for Au, Ag and
Cu nanospheres surrounded by water by COMSOL
(points) in comparison to spectra obtained by the Mie
theory (solid lines) for various size of nanospheres of
these metals, Au (30–140 nm), Ag (20–60 nm), Cu
(20–100 nm) (upper). Extinction spectra for three Au
nanospheres with radii 20, 70, and 140 nm with features
indicating multipole contribution (lower).

have been compared also with theoretical predictions
within RPA approach including exact calculation and
perturbative approximation for the Lorentz friction.
Comparison of results for Au (presented in Fig. 3) shows
good agreement of exact RPA calculations with experi-
ment and numerical estimations. The perturbative ap-
proximation for the Lorentz friction (resulting in ∼ a3

damping growth) is valid only for spheres smaller than
ca. 30 nm (for Au, vacuum), for larger spheres the pre-
dicted increase of attenuation upon perturbation ap-
proach is much faster than in experiment and numer-
ical calculations and produces an artifact — the over-
damped regime when an oscillating solution disappears.
Let us emphasize, however, that the exact inclusion of the
Lorentz friction, as given by Eq. (1), is free of this arti-
fact. It means that the oscillating solution in larger MNP
is not of damped harmonic oscillator form (as that for
perturbative approach), but corresponds to the distinct
dynamic equation of the third order differential equation
caused by the Lorentz friction.

In the case of Ag nanoparticles the experimental data
are shifted to longer wavelengths in comparison to both
our numerical and theoretical predictions. Probably it is
the consequence of silver nanoparticle synthesis method,
which could leave on the silver surface residual amount
of organic surfactant (citrate) or other chemically and
optically active molecules. This effect may be verified in
COMSOL by introducing of specially defined dielectric
coating to the model MNP. Figure 3 shows changes of
the plasmon resonance wavelength due to varying thick-
ness of dielectric shell with refractive index n = 1.5 and
due to varying shell refractive index with shell thickness
10 nm. Both increasing shell thickness and increasing
refractive index of the shell material cause redshift of
resonance wavelength. The best fit between theory and
experimental data is obtained using refractive index 1.5
and thickness of the model coating layer of 10 nm.
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Fig. 3. Plasmon self-frequencies for plasmon in MNPs (Au and Ag) found by RPA, COMSOL Mie and from experiment
— A and D, B — after [6], C — after [7], E — after [8], F — after [9]. Perfect agreement Mie–COMSOL corresponds
to the same dielectric function assumed as the prerequisite for both fully equivalent solutions of the Maxwell equations.
Discrepancy for Ag may be related with silver MNP surface chemical modification, which can be modeled by additional
outer layer (right parts).

4. Comparison with the size effect
in the Mie theory

To explain the crossover in the size dependence of the
experimentally observed red-shift of plasmon resonance
in MNPs with growing nanosphere radius, within the Mie
theory two regimes are usually considered [10]: the in-
trinsic size effect (for a < 20 nm, for Au) and the extrinsic
one (for a > 20 nm). The intrinsic size effect is referred
to the dipole approximation of the Mie response which is
justified for nanosphere radius well smaller than the plas-
mon resonance wavelength. For relatively small particles,
as in the case of the intrinsic size effect, the model di-
electric function includes electron scattering which gives
∼ 1

a red-shift of the dipole Mie resonance. For larger
nanospheres (approximately for a > 20 nm, for Au)
when in experiment there is observed the resonance red-
shift rising with a growth, the extrinsic mechanism is
suggested upon the Mie theory [10–12]. The extrinsic
regime resolves itself in the Mie theory to the inclusion
of the multipole mixing in e-m response. To obtain a co-
incidence with the experimentally observed size effect in
the red-shift of plasmon resonance in larger nanospheres
the irradiation corrections to the dielectric function have
been introduced proportional to the number of electrons,
thus ∼ a3 [13]. This overestimates, however, the radia-
tive damping. For small MNP radii the dipole approx-
imation holds — thus inclusion of electron scattering
gives reasonable agreement with experimental observa-
tions. Nevertheless, for larger radii (approximately for
radii a > 20 nm, for Au) the observed experimentally
resonance red-shift is not proportional to 1

a , though the
dipole limit still holds. The Lorentz friction induced ir-
radiation losses strongly contribute to plasmon energy
dissipation for a > 12 nm (for Au in vacuum). For such
radii the irradiation losses dominate plasmon damping
with a factor higher than 1 (ca .5 at a = 20 nm). This
was not included in the conventional Mie theory upon
the intrinsic size effect.

The irregular size effect of plasmon damping caused by
the Lorentz friction, if accounted for accurately (cf . for-

Fig. 4. Extinction spectra for Au spheroid and
nanorod for varying polarization of incident light
(COMSOL). Longintudinal (electric field parallel to
long axis) and transversal (electric field perpendicular
to long axis) plasmon modes are visible.

Fig. 5. Extinction spectra calculated for Au spheroid
and nanorod with varying aspect ratio (COMSOL).

mula (1)), well explains the experimentally observed also
irregular (i.e., not proportional to a3) size effect for the
red-shift. This Lorentz friction induced correction mixes,
however, with the extrinsic size effect due to the multi-
pole contributions, but rather for radii a > 60 nm (Au)
significantly exceeding the previously suggested limiting
20 nm [10, 11, 13]. The quadrupole contribution (and
the higher multipoles at larger radii) results in the de-
formation and larger broadening of the extinction fea-
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tures not allowing its Lorentzian form any longer (the
higher energy quadrupole assistant broad peak occurs
first at smaller wavelength in association to the dipole
peak broadened and red-shifted by the Lorentz friction).
In the experiment it is visible for Au (at 75 nm) and Ag
(at 30–40 nm) [14, 15]. The multipole corrections cannot
be avoided for radii a > 60 nm (Au), as is evident by de-
formation of the Lorentzian shape describing extinction
features accompanied by their significant broadening, for
Au observed at a = 75 nm [14, 15].

5. Summary

The accurate microscopic analysis of the Lorentz fric-
tion carried out within the RPA approach supports mod-
eling of the dielectric function needed in the Mie theory
(and in COMSOL) and thus can well be utilized to pro-
long the intrinsic size-effect upon the Mie approach be-
yond the 20 nm size limit to larger radii for which the
dipole approximation still holds (up to approximately
60 nm for Au). One should note however, that since di-
electric function simultaneously represents all energy dis-
sipation channels in a combined manner (assumed phe-
nomenologically damping is 10 times greater than vF

2λb
),

details of the size effect caused by the exact form of the
Lorentz friction (out of the scope of the Mie theory as
of yet [13]) are required to be included to the modeled
dielectric function. Thus, the specific size dependence of
the damping time rate for plasmons due to the Lorentz
friction for electron density dynamics in nanospheres may
be employed to explain the observed size-effect of plas-
mon resonance in the radius window 10–60 nm (for Au).
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