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We investigate the Read–Rezayi parafermion state of correlated electrons at the fractional Landau level filling
ν = 3/5. It is a Jack polynomial generated by contact four-body repulsion. We show by exact diagonalization
that it is also emerges from a suitable short-range two-body interaction. We find that it closely matches Coulomb
ground state in the second Landau level of non-relativistic fermions, and thus possibly describes the ν = 13/5
(and, by conjugation, ν = 12/5) fractional quantum Hall effect in GaAs.
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1. Introduction
Fractional quantum Hall effect (FQHE) [1] reveals

spontaneous emergence of a series of correlated, non-
degenerate, gapped quantum fluid ground states in a sys-
tem of essentially two-dimensional (2D) electrons with
the Coulomb interaction filling particular fractions ν of
an isolated, massively degerate Landau level (LL) formed
in a high magnetic field. Since orbitals of the lowest
LL are essentially monomials (in the complex 2D co-
ordinate x), the many-electron wave-functions defining
universality classes for different FQH states are seeked
among complex antisymmetric polynomials. (This also
applies to FQHE in higher LLs, via mapping onto the
lowest LL.)

2. Theory
Virtually all known FQH states are explained by the

composite fermion (CF) theory [2] which postulates bind-
ing by electrons an even number (2p) of vortices of the
many-body wave function. Most invoke one kind of
essentially free CFs filling an integral number n of ef-
fective CF LLs (ΛLs); this is the Jain series of frac-
tions: ν = n/(2pn ± 1), equating FQHE with integral
QHE of CFs. Others depend on CF–CF interaction and
their description involves extensions such as CF pair-
ing/condensation [3] or additional CF degrees of freedom
(“partitions”) [4]. Among the latter is the “parafermion”
ν = k/(k+2) series of states [5] generated as unique zero-
energy ground states of contact (k + 1)-body repulsions,
exemplifying the Jack polynomials [6].

The Jack polynomials Jαλ are indexed by integer parti-
tions λ and real numbers α. They are eigenstates of the
following Laplace–Beltrami Hamiltonian defined in the
space of symmetric polynomials

HLB(α) = α
∑
i

(xi∂i)(xi∂i)

+
∑
i<j

(xi + xj)(xi − xj)
−1(xi∂i − xj∂j). (1)

An explicit recursion construction exists for symmetric
Jack polynomials [7]; fermionic Jacks have an additional
antisymmetrizing Vandermonde factor.

The Jacks relevant for FQHE must yield uniform wave
functions; in the Haldane spherical [8] geometry this
means no total angular momentum L = 0. This sets
the value of α, while partition λ determines the filling
factor ν [9].

3. Results

Let us consider a particular Jack: Read–Rezayi (RR)
k = 3 parafermion state [5], expected to form in the first
excited (n = 1) LL of massive spinless electrons and thus
a plausible candidate for the ν = 13/5 FQHE in GaAs.

Fig. 1. (a) Contour map of overlaps of the RR
state with ground states of two-body pseudopotentials
(V1, V3, V5), calculated on a sphere for N = 21 particles.
Corners of the inner triangle correspond to one positive
pseudopotential Vm (m as indicated) and all others van-
ishing; the inside to Vm=1,3,5 > 0 and Vm>5 = 0 [10].
(b) Pair correlation functions g(r) of RR state and
Coulomb ground state in the n = 1 LL (layer width
w/lB = 3; lB is the magnetic length), calculated for
N = 24.

First, we checked if it can be accurately generated by
a suitable short-range two-body interaction. We diago-
nalized two-body interactions with arbitrary three lead-
ing pseudopotentials V1 + V3 + V5 = 1 (Vm defined as
dependence of pair energy V on relative angular momen-
tumm [8]). In Fig. 1a we show the map of overlaps of the
lowest L = 0 eigenstate of (V1, V3, V5) with the RR state,
obtained for a fairly large system of N = 21 particles
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on a sphere (results for smaller systems are similar). In-
deed, for V1 : V3 : V5 ≈ 6 : 3 : 1 the overlap reaches 97%,
which demonstrates that a suitable two-body interaction
can simulate a higher-order interaction.

Second, from similar maps we have also determined
optimum model interactions (V1, V3, V5) which simulate
Coulomb ground states in different LLs. We found that
only the n = 1 LL in GaAs (especially in wider quasi-2D
layers) is simulated by nearly the same model as the RR
state.

Finally, we have directly compared the RR and
Coulomb states; the overlaps are listed in Table I; the
pair correlation functions are drawn in Fig. 1b. In-
deed, the ν = 13/5 FQHE in GaAs appears a manifes-
tation of the RR state, described by a Jack wave func-
tion. By particle–hole conjugation, the (also observed)
ν = 12/5 FQHE state is the corresponding “anti-Jack”.

TABLE I

Overlaps of the RR state with different Coulomb L = 0
ground states on a sphere. Columns: electron number N ,
magnetic flux 2Q, dimension of the diagonalized N -body
subspace with Lz = 0, and the overlaps with Coulomb
states in the n = 0 and 1 LLs in GaAs (LLn) and in
the n = 1 and 2 LLs in graphene (G-LLn). Layer width
is zero except for LLwide

1 corresponding to 3 magnetic
lengths.

N 2Q Dim LL0 LL1 LLwide
1 G-LL1 G-LL2

18 27 2× 105 0.5399 0.9369 0.8995 0.5458 0.3584
21 32 5× 106 0.5689 0.8990 0.9316 0.5714 0.1332
24 37 1× 108 0.3442 0.8100 0.8792 0.3468 0.1408
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