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Studies for a single charge qubit and two capacitively coupled qubits built on triple quantum dots are presented.
We show feasibility of implementing two-qubit gate operations, e.g. the CPHASE gate can be implemented with
the fidelity higher than 99% for strong couplings.
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1. Introduction

Charge qubits realized in the double quantum dot sys-
tems have been a subject of many theoretical and exper-
imental studies due to their simplicity and fast operation
speed [1]. However they exhibit short decoherence times
caused by charge noise and phonons. Hentschel et al. [2]
followed by Vasiliev and Fedichkin [3] showed enhanced
robustness to phonon-induced decoherence in the triple
quantum dot charge qubit in triangular and linear geom-
etry, respectively.

In this paper we develop the concept of triple quan-
tum dot charge qubit. We show that leakage to a higher
energy level, limiting the single qubit gate fidelities, can
be eliminated by an appropriate modification of tunnel-
ing barriers and dot energies. Next we present studies
for two capacitively coupled qubits and show a feasibil-
ity of implementing of two-qubit operation gates for two
different coupling topologies.

2. Single qubit

The charge qubit is defined in an artificial molecule
consisting of three coherently coupled quantum dots with
a single charge carrier. We assume that the quantum dot
energies and the tunnel couplings between them can be
changed independently by applying voltages applied to
the electrodes. The system is described by the model
Hamiltonian

Ĥ =

3∑
i

εic
†
i ci +

3∑
i

3∑
j>i

tij

(
c†i cj + c†jci

)
, (1)

where εi is an energy level at the i-th dot, tij is a tun-
nel coupling between the dots i and j and c†i (ci) is a
fermionic creation (annihilation) operator. Because we
consider only one charge carrier in the system the spin
is neglected. In a fully symmetric case (εi = ε, tij = t)
the eigenstates correspond to the states in the Jacobi co-
ordinates [4]: |0〉 = (|q00〉 − |0q0〉)/

√
2, |1〉 = (|q00〉 +

|0q0〉− 2|00q〉)/
√
6 and |Q〉 = (|q00〉+ |0q0〉+ |00q〉)/

√
3,
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where q denotes the position of the charge carrier. We
further assume that the charge carrier is a hole (or, equiv-
alently [5], that our system contains five electrons). In
this case t > 0, and the states |0〉 and |1〉 form a doubly
degenerate ground state. |Q〉 is an excited state sepa-
rated by an energy gap 3t. We use the states {|0〉, |1〉} to
define a computational space of the qubit. To make ma-
nipulation of the qubit possible we introduce asymmetry
to the system, which lifts the ground state degeneracy.
We describe it as an influence of an effective electric field,
which modifies the parameters: εi = ε+gE cos(θ+i2π/3),
tij = t + gE cos(θ + 2(6 − i − j)π/3). Here, θ is the an-
gle describing direction of the effective field in respect
of the vector starting at 3rd dot and perpendicular to
the opposite base of the triangle and the parameter gE
is proportional to the magnitude of the field. Then, the
effective Hamiltonian of the qubit subspace can be ex-
pressed as

Ĥq = CI2 +
δ

2
σz +

γ

2
σx, (2)

where C = ε − t, δ = −3gE cos (θ), γ = −3gE sin (θ).
This is mathematically equivalent to the Hamiltonian of
a spin in a magnetic field oriented in the direction γx̂+δẑ
with a magnitude proportional to gE . Tuning the Hamil-
tonian parameters enables full control of a qubit position
on the Bloch sphere.

We modify both quantum dot energies and tunneling
couplings in our system, which allows to decouple the
computational subspace from the |Q〉 state: 〈0|Ĥ|Q〉 =
〈1|Ĥ|Q〉 = 0. Due to this fact, high values of gE can
be used, thus increasing operation speed, without any
mixing with the |Q〉 state. This is a serious advantage
in comparison with the system considered by Hentschel
et al. [2], where only the tunnel couplings were modified
and, therefore, mixing terms were present. Let us con-
sider their system with a tunnel coupling detuning by a
factor of 10 (which is technically achievable [6]) which
corresponds to gE = 0.8. In this case the Pauli-X gate
fidelity (the probability of obtaining a desired final state)
is reduced by a leakage to about 96%.

3. Two qubits

In this part we consider two triple-quantum dot
molecules with capacitative coupling between them. We
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assume that for sufficiently weak couplings the leakage
from the computational subspace can be neglected, and
therefore the two-qubit system is effectively formed. The
coupling between the qubits is described by an interac-
tion Hamiltonian

Ĥ ′ =

3∑
i=1

3∑
j=1

Uijn
1
in

2
j , (3)

where n1i and n2j denote charge number operators at the
i-th dot of the first and the j-th dot of the second qubit,
respectively, and Uij is a Coulomb interaction between
quantum dots. Our model is qualitatively different from
the system studied by Hentschel et al. [2], where a tunnel
coupling between the qubits was considered.

Fig. 1. Tip-to-tip (a) and base-to-base (b) coupling
topologies.

We study two coupling topologies: with one coupling
(tip-to-tip, Fig. 1a) and two couplings (base-to-base,
Fig. 1b). For the tip-to-tip configuration an effective two-
qubit Hamiltonian is

Ĥ2q = CI4 + Ĥ1
q ⊗ I2 + I2 ⊗ Ĥ2

q + Ĥint, (4)

where C = U33/9, Ĥ1
q and Ĥ2

q corresponds to the
first and second qubit with modified parameters δi =
−3giE cos

(
θi
)
− 2U33/9, γi = −3giE sin

(
θi
)
. Ĥint de-

scribes interactions between the qubits which for this case
is of an Ising type

Ĥint = Jzzσ
1
z ⊗ σ2

z (5)
with Jzz = U33/9.

For the base-to-base topology and U11 = U22 = U the
parameters are C = 2U/9, δi = −3giE cos

(
θi
)
+ 2U/9,

γi = −3giE sin
(
θi
)
, and the interaction Hamiltonian

Ĥint = Jxxσ
1
x ⊗ σ2

x + Jzzσ
1
z ⊗ σ2

z (6)
is of the anisotropic XY Z Heisenberg type with Jxx =
U/6, Jzz = U/18. These results are in contrast to
the case of two double-dot qubits, where the interaction
Hamiltonian is always of the Ising type [1].

Let us now consider how to perform two-qubit opera-
tions in these two topologies. We begin with a CPHASE
gate, which is a unitary diag(1, 1, 1,−1). It can be proved
that combination of the CPHASE and a full set of sin-
gle qubit gates allows us to perform universal quantum

computation [7]. For the tip-to-tip topology, realiza-
tion of this gate is straightforward for g1E = g2E = 0
due to the absence of non-diagonal elements of interac-
tion Hamiltonian (5). The operation time for this gate
is equal to 9~π/Jzz with Jzz = U/9. For the base-to-
base topology realization of the CPHASE gate is also
possible, however additional single qubit gates are re-
quired. Operation time is still 9~π/Jzz, with a smaller
value of Jzz = U/18, proportional to the diagonal part
of the Hamiltonian. However, it can be shortened to
9~π/Jxx, when the Hadamard gates on both qubits are
implemented before and after the CPHASE gate imple-
mentation.

Although the CPHASE gate is sufficient for universal
quantum computation, realization of other specific two-
qubit gates in an optimal time and with a minimal op-
eration complexity is worth of considering. One can ask
whether the interaction Hamiltonian of the base-to-base
topology (6) enables a realization of some specific quan-
tum gates in a shorter time or in a more simple way. It is
known that, due to the favorable mathematical form of
the Hamiltonian, the symmetric Heisenberg interaction
enables straightforward realization of the SWAP gate,
while the XY Heisenberg interaction — of the iSWAP
gate [7]. However, in our case, because of the Hamilto-
nian asymmetry, performing of these gates requires addi-
tional single qubit gates (equivalent to a basis rotation).
The iSWAP gate, defined as a state vector transforma-
tion (a, b, c, d) → (a, ic, ib, d), can be implemented in a
time optimal way using 2 two-qubit operations. Dur-
ing the first step one uses an interaction Hamiltonian
in the rotated basis Ĥint = U (σxσx/6 + σyσy/18), in
the second one — Ĥint = U (σxσx/18 + σyσy/6). Ba-
sis rotations require additional 16 single-qubit gates (8
for each qubit). A comparable complexity (2 two-qubit
and 17 single-qubit gates) is required for realization of a
qualitatively similar Bogolyubov gate. Using the Ising-
type Hamiltonian, the iSWAP gate or Bogolyubov gate
requires twice the time, but with a lower operation com-
plexity — only 1 two-qubit operation and 4 Hadamard
gates are required. The Ising-type Hamiltonian allows
also to perform the SWAP gate using a single-unitary op-
eration. We conclude that the shorter operation time for
the base-to-base topology results from the stronger cou-
pling, which is the consequence of the increase in number
of interacting quantum dots. Higher operation complex-
ity results from anisotropy of the interation.

In the case of two qubit operations, leakage from the
computational subspace is unavoidable, and it becomes
greater as U increases. For the tip-to-tip topology inter-
action predominantly |1〉|Q〉, |Q〉|1〉 states are populated
due to the leakage, whereas probability of the leakage to
|Q〉|Q〉 state is very small and the states |0〉|Q〉, |Q〉|0〉 are
completely decoupled. However, in the particular case of
the CPHASE gate, a decrease of the gate fidelity as a
function of U is nonmonotonic — local maxima are ob-
served. For example at U = 1.665t the fidelity is 99.44%
(assuming no decoherence), making the gate operation
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feasible even for a non-perturbative coupling between the
qubits. This is because the probability of leakage oscil-
lates in time, and it decreases to a small value when the
operation is finished. For other types of operation gates
one observes a more significant decrease of the fidelity
with U . A similar reduction of the fidelity occurs also in
the case of the base-to-base coupling.

4. Conclusions

Summarizing, we have studied the charge qubit built
of three coherently coupled quantum dots. An appropri-
ate choice of the parameters allows to avoid leakage be-
yond the qubit subspace during single qubit gates even
for high operation speeds. We also show the feasibility
of two qubit gates implementation for two different cou-
pling topologies of capacitative couplings. Different types
of gates can be performed by either a single unitary oper-
ation or a sequence of operations. In particular, the tip-
to-tip topology, corresponding to the Ising-type interac-
tion, enables straightforward realization of the CPHASE
gate. Moreover, it can be implemented with relatively
low leakage (99.44% fidelity) even for non-perturbative
coupling between the qubits. The gate realization using
the base-to-base coupling requires a higher number of
unitary operations, however may be more time-optimal,
if the value of inter-dot Coulombic coupling is limited.
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