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We present the results of numerical and experimental studies of the elastic enhancement factorW for microwave
rough and rectangular cavities simulating two-dimensional chaotic and partially chaotic quantum billiards in the
presence of moderate absorption. We show that for the frequency range ν = 15.0−18.5 GHz, in which the coupling
between antennas and the system is strong enough, the values of W for the microwave rough cavity lie below the
predictions of random matrix theory and on average above the theoretical results of V. Sokolov and O. Zhirov,
Phys. Rev. E 91, 052917 (2015). We also show that for the partially chaotic rectangular billiard the enhancement
factor W calculated by applying the Potter–Rosenzweig model with κ = 2.8± 0.5 is close to the experimental one.
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1. Introduction

The elastic enhancement factor, introduced more than
50 years ago by Moldauer [1], has been frequently con-
sidered in nuclear physics [2, 3] and in other fields [4–6].
An enhancement of the elastic collisions over the inelastic
ones in scattering phenomena is the characteristic feature
of chaotic systems. The elastic enhancement factor Wβ

defined as the ratio of variances of diagonal elements of
the two-port scattering matrix Ŝ to off-diagonal elements
of this matrix [4–6], where β = 1 or 2 is the symmetry in-
dex for systems with preserved and broken time reversal
symmetry (TRS), respectively, is especially interesting
because it can be used to study realistic open systems
also in the presence of strong absorption.

The properties of the elastic enhancement factor Wβ

have been studied in several precisely controllable sys-
tems such as microwave cavities [7–10] and networks [11–
13]. The universality of the elastic enhancement factor
Wβ=1 has been tested in the wave scattering experiments
with microwave cavities simulating chaotic quantum bil-
liards [8, 9] in the presence of weak and moderate absorp-
tion. Dietz et al. [9] have also studied the universality of
Wβ in the case of preserved and partially broken time
reversal symmetries. Quite recently an extensive study
of the inverse of elastic enhancement factor Ξ = 1/Wβ=1,
including very low absorption regime, has been published
by Yeh et al. [10]. The elastic enhancement factor Wβ in
a presence of the moderate and large absorption strength
defined as follows: γ = 2πΓ/∆, where Γ is the average
resonance width and ∆ is the mean level spacing [5, 6],
5 ≤ γ ≤ 54.4 [11–13] has been also studied for microwave
irregular networks [14–17] simulating quantum graphs
with preserved and broken time reversal symmetry.

Microscopically, the absorption strength γ =
∑
c Tc

can be modeled by means of a very big number of weakly
coupled to continuum, parasitic channels “c”, where Tc =
1−|〈Scc〉|2 and 〈Scc〉 stands for the average S-matrix [6].
In the paper of Kharkov and Sokolov [4] that deals with
the transient from the regular to chaotic internal dy-

namics of open systems, controlled by the parameter of
chaoticity κ, the openness η is introduced instead of the
absorption strength γ, which is described formally by the
same formula. To determine the elastic enhancement fac-
tor the two-port measurement is necessary. The coupling
of the antennas are quantified by the transmission coef-
ficients Ta = 1 − |〈Saa〉|2, where 〈Saa〉 is an average of
the diagonal element of the scattering matrix [18]. Thus
2πΓ/∆ =

∑
d Td = (Ta + Tb + α) with α =

∑
c Tc rep-

resenting the internal absorption of the cavity [9]. The
reciprocals of Γ and ∆ are, respectively, the time that
the incoming particle spends on average inside the sys-
tem and the Heisenberg time.

The elastic enhancement factor Wβ is defined as [5, 6]:

Wβ =

√
var(Saa)var(Sbb)

var(Sab)
, (1)

where var(Sab) ≡ 〈|Sab|2〉−|〈Sab〉|2 is the variance of the
scattering matrix element Sab of the two-port scattering
matrix

Ŝ =

[
Saa Sab

Sba Sbb

]
. (2)

For small and intermediate values of the absorption γ
the elastic enhancement factor Wβ might depend both
on γ and on the coupling to the system [8]. Kharkov and
Sokolov [4] showed that the elastic enhancement factor
for open systems with the transient from the regular to
chaotic internal dynamics depends on the parameter of
chaoticity κ and the openness η. However, for large ab-
sorption strength γ � 1 the elastic enhancement factor
can be approximated by the formula Wβ = 2/β [5, 6, 8].

In this paper we present the results of experimental
and numerical studies of the elastic enhancement factor
Wβ=1 for microwave rough and rectangular cavities per-
formed for the frequency range ν = 15.0−18.5 GHz and
ν = 16.5−18.5 GHz, respectively . The cavities were cou-
pled to the vector network analyzer through the anten-
nas, simulating respectively, chaotic and partially chaotic
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two-dimensional (2D) quantum billiards, with preserved
time reversal symmetry (β = 1), in the presence of mod-
erate absorption. Recently, such a two-channel prob-
lem (e.g., an experimental chaotic system with two ports
“a” and “b”) with internal absorption and time reversal
symmetry has been numerically considered by Sokolov
and Zhirov [19]. It was shown that for the equivalent
channels “a” and “b” with the transmission coefficients
Ta = Tb = T , 0 ≤ T ≤ 1, the enhancement factor de-
pends both on the transmission coefficient T and inter-
nal absorption and can take the values 2 ≤ Wβ=1 ≤ 3.
Thereafter, as we limit our interest to the case of pre-
served TRS, we will use the abbreviation W ≡Wβ=1.

2. Microwave cavities simulating quantum
billiards

In the experiment we used a microwave rough cavity
and a rectangular cavity to simulate a two dimensional
(2D) quantum chaotic billiard and a quantum billiard
in a transient region between regular and chaotic dy-
namics [20], respectively. If the excitation frequency ν
is below νmax = c/2d, where c is the speed of light in
the vacuum and d is the height of the cavity, only the
transverse magnetic TM0 mode can be excited inside the
cavity. Below the frequency νmax the equivalency be-
tween the Helmholtz equation describing microwave cav-
ities and the Schrödinger equation describing the quan-
tum systems [21–35] provides the analogy between mi-
crowave cavities and quantum billiards. Absorption of
the microwave cavities increases with the frequency but
more effectively may be changed by an application of mi-
crowave absorbers. In this paper we are interested only
in low or moderate absorption, for which W > 2 [5, 6, 8]
and which, in the used cavities, is observed without any
additional absorbers. One should mention that the intro-
duction of one-dimensional microwave networks simulat-
ing quantum graphs and two-dimensional microwave cav-
ities simulating quantum billiards increased greatly the
number of systems which were used to verify wave effects
predicted on the basis of quantum physics [36–42].

3. Experimental setup

The two-port measurements of the scattering matrix Ŝ
were performed with the rough semicircular [43] and the
rectangular microwave cavities in the frequency window
15.0–18.5 GHz. In Fig. 1 the schemes of the rough (part
(a)) and the rectangular (part (b)) cavities are shown.
The rough cavity is composed of the two side wall seg-
ments and two semicircular plates of an aluminium al-
loy, which contains more than 90% of pure aluminium.
The semicircular segment (I) is described by the function
r(θ) = r0 +

∑M
i=2 ai sin(iθ + φi), where the mean radius

r0 = 20.0 cm, M = 20, and 0 ≤ θ < π with the phases φi
uniformly distributed on [0,2π]. The amplitudes ai are
uniformly distributed on [0.084, 0.091] cm. The surface
roughness of a billiard is characterized by the parameter
〈k〉 = [〈k2(θ)〉θ]1/2, where k(θ) = (dr/dθ)/r0, that de-
termines, among others, the state number N above which

Fig. 1. (a) The rough microwave cavity and (b) the
rectangular cavity which were used for measuring the
two-port scattering matrix Ŝ. The rough cavity side
wall segments are marked by (I) and (II) (see text).
The vector network analyzer Agilent E8364B was con-
nected through the flexible microwave cables HP 85133-
60016 and HP 85133-60017 to the microwave antennas
which were introduced inside the cavities (holes A1, A2

in panel a) and A1, A2, A3, A4, A5 in panel (b)). In or-
der to create different realizations of the rough cavity a
metallic perturber (see panel (a)) was moved inside the
cavity. The width of the rectangular cavity was 20 cm.
The length of the cavity was changed from L1 = 41.5 to
36.5 cm in 25 steps of 0.2 cm length.

the cavity is fully chaotic [44–46]. In our case the param-
eter 〈k〉 ≈ 0.2 [46] which defines the limit of chaoticity
above N = 208 (≈10.1 GHz). It is important to point
out that the presence of the metallic perturber, used to
obtain different configurations of the cavity, lowers this
limit [20].

The rectangular microwave cavity was made of brass.
The width of the cavity was L2 = 20 cm and its length
was changed from L1 = 41.5 to 36.5 cm in 25 steps of
0.2 cm length. Five holes in the bottom plate of the
cavity enable to perform measurements of the scatter-
ing matrix Ŝ for ten different combinations of antennas
positions.

All cavities had the same height d = 8 mm, so that
νmax = 18.7 GHz. The wires of microwave antennas (di-
ameter 0.9 mm) were protruded 3 mm into the cavities.
The antennas were connected to the vector network an-
alyzer Agilent E8364B through the HP 85133-60016 and
HP 85133-60017 flexible microwave cables.

4. Results

The averaged transmission coefficient of the 3 mm long
antennas T̄ = 1

2

∑
j=a,b Tj with Tj = 1 − |〈Sjj〉|2 as a
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function of the frequency for the both rough and rectan-
gular cavities is shown in Fig. 2 for the whole range of

Fig. 2. The averaged transmission coefficient of the
3 mm long antennas T̄ = 1

2

∑
j=a,b Tj with Tj = 1− | <

Sjj > |2. Full circles and diamonds mark the averaged
transmission coefficients of the rough and rectangular
cavities, respectively.

the measurements. The elements of the scattering matri-
ces 〈Saa〉 were averaged over 70 different configurations
of the rough cavity in the frequency window 0.5 GHz.
For the rectangular cavity the elements of the scattering
matrix 〈Saa〉 were averaged over 25 lengths of the cavity
and ten different combinations of antennas positions in
the frequency window 0.5 GHz.

In the Table the dependence of the internal absorption
α = γ − 2T̄ of the rough cavity on the frequency ν is
shown in the frequency range 15.0−18.5 GHz. The in-
ternal absorption of the cavity depends not only on the
ohmic losses of the cavity’s material but in the reality
it is strongly modified by the precision of manufactur-
ing and assembling of the cavity. The total absorption γ
was obtained by averaging the widths of the well resolved
intensity resonances over the frequency window 0.5 GHz.

TABLE

The absorption strength γ, the averaged transmission co-
efficient T̄ and the internal absorption α of the rough
cavity in the frequency range δν.

δν [GHz] γ T̄ α

15.0–15.5 5.02 0.49 4.04
15.5–16.0 5.16 0.56 4.04
16.0–16.5 5.32 0.59 4.14
16.5–17.0 5.82 0.66 4.50
17.0–17.5 6.29 0.70 4.90
17.5–18.0 6.55 0.79 4.98
18.0–18.5 6.82 0.79 5.24

The experimental and numerical results of the elastic
enhancement factor W for the rough cavity are shown in
Fig. 3. The full circles with the error bars denote the

experimental results. The empty circles show the numer-
ical results based on the random matrix theory (RMT)
calculated for the total absorption γ (see the Table). The
triangles stand for the numerical results of Sokolov and
Zhirov [19] which were obtained for the two equivalent
channels and the internal absorption α = 5.2. Numerical
results of Sokolov and Zhirov are not available for the ac-
curate values of the internal absorption presented in the
Table. However, for 4.0 < α < 5.2 they should lie slightly
above the ones for α = 5.2 (≈ 0.03 for ν = 15.25 GHz
and less for higher frequencies, see [47]). The experimen-
tal results for the rough cavity are lying below the RMT
predictions and on average above the Sokolov and Zhirov
results. Moreover, the experimental results are closer to
the Sokolov and Zhirov prediction.

Fig. 3. The elastic enhancement factorW of the rough
cavity in the two-channel case. The full circles with er-
ror bars denote the experimental results. The empty
circles show the RMT results calculated for the total
absorption γ. The triangles show the numerical results
obtained for the two equivalent channels and the inter-
nal absorption α = 5.2 [19]. The dotted parallel lines
W = 2 and 3 show, respectively, the RMT limits for
very strong and very weak absorption.

In Fig. 4 full diamonds show the experimental results
obtained for the elastic enhancement factor of the rect-
angular cavity with the two open channels (see [20] for
the details). The experimental results were obtained by
averaging of W over 10 different combinations of the po-
sitions of the 3 mm long antennas and over 25 lengths of
the cavity in the frequency range 0.5 GHz. It was shown
in [20] that scattering on microwave antennas moves the
system simulated by the rectangular microwave cavity to
a transient region between regular and chaotic dynamics.
A degree of chaoticity of such a system may be described
by a parameter κ, which changes from κ = 0 for classi-
cally integrable systems to κ → ∞ for chaotic systems.
In our case κ = 2.8±0.5 [20]. In such a situation the elas-
tic enhancement factor of the two-port scattering matrix
can be expressed by [4]:
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W = 3− γ
∫ ∞
0

dτ e−γτ b2,1(τ, κ), (3)

where b2,1(τ, κ) is the spectral form factor, which is equal
to zero for integrable systems with preserved time rever-
sal symmetry, which immediately leads to W = 3. On
the other hand, in the transition region 0 < κ < ∞, its
analytic form is unknown.

Fig. 4. The elastic enhancement factor W of the two-
port scattering matrix Ŝ of the rectangular cavity (full
diamonds) coupled to the two external channels via an-
tennas simulating a quantum system with the chaoticity
parameter κ = 2.8 [20]. The empty diamonds show the
numerical results obtained from the RMT based calcu-
lations (formula (3)) by using the spectral form factor
b2,1(τ, κ = 2.8) given by the formula (4). For compari-
son, the empty squares show the results of the numeri-
cal calculations performed for an integrable system with
b2,1(τ, κ = 0). The dotted parallel lines W = 2 and 3
show, respectively, the RMT limits for very strong and
very weak absorption. The later one is also expected for
the integrable systems.

In order to perform the numerical calculations of the
enhancement factor W we used the following formula of
the spectral form factor [48]:

b2,1(τ, κ) = 1−K(τ, κ) =

1− 1

L
|
L∑
l=1

e iElτ |2 − 1

L
|1− e iL∆τ

1− e i∆τ
|2, (4)

where El are the energy levels of the considered sys-
tem and ∆ is the mean level spacing equal to 1 af-
ter the energy levels unfolding. The energy levels El
were obtained as the eigenvalues of the 500 Potter–
Rosenzweig random matrices [49] of size 5001 × 5001
calculated with the transition parameter λ = κ/N =
2.8/5001 [20]. The rectangular cavity in the frequency
range 16.5−18.5 GHz was characterized by the absorp-
tion strength, γ = 5.6−7.4 [20].

Figure 4 shows that the enhancement factor W cal-
culated by applying the Potter–Rosenzweig model with
κ = 2.8 ± 0.5 (empty diamonds) is within the experi-
mental errors close to the experimental results (full di-

amonds). For comparison, the empty squares show the
results of the numerical calculations of W with κ = 0
which yields W ≈ 3, the limit for the integrable system.

5. Conclusions

The elastic enhancement factorW was numerically and
experimentally studied for the microwave rough and rect-
angular cavities simulating two-dimensional chaotic and
partially chaotic quantum billiards. The rough cavity in
the frequency range 15.0–18.5 GHz was characterized by
the moderate absorption strength, γ = 5.0−6.8. We show
that the results obtained for the rough cavity lie below
the RMT prediction and on average they are above the
theoretical results predicted by Sokolov and Zhirov [19].
In the case of a partially chaotic system the elastic en-
hancement factor W calculated by applying the Potter–
Rosenzweig model with κ = 2.8 ± 0.5 is within the un-
certainties of the experimental results obtained for the
rectangular cavity in the frequency range 16.5−18.5 GHz.
The rectangular cavity was characterized by the absorp-
tion strength, γ = 5.6−7.4 [20].
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