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Chaotic Scattering:
Exact Results and Microwave Experiments
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Scattering experiments are indispensable for the study of classical and quantum systems. In the Heidelberg
approach, universal features are addressed by assuming that the reaction zone is fully quantum chaotic. Although
it stems from nuclear physics, it later on turned out to be applicable to a large variety of systems on different
scales, including classical wave systems. For a long time, the distribution of the off-diagonal scattering-matrix
elements resisted analytical treatment. I review two recent studies in which my collaborators and I fully solved
this problem. We also carried out a comparison with data from microwave experiments.
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1. Introduction

Most of what we know about quantum systems comes
from scattering experiments [1]. Applications range from
nuclear, atomic and molecular physics, over mesoscopic
ballistic devices all the way classical to wave systems such
as microwave and elastomechanical billiards, as well as
to wireless communication [2–31]. We begin with briefly
sketching the general theoretical modeling of the scat-
tering process. As illustrated in Fig. 1, waves propagate
in real or fictitious channels and are scattered at a tar-
get, here also referred to as interaction zone. The scat-
tering matrix S connects ingoing and outgoing waves.
If there are M channels, the scattering matrix S is an
M × M matrix. Flux conservation requires unitarity,
SS† = 1M = S†S. If direct reactions between any two
channels are not observed, the energy average S̄ may
be assumed to be diagonal. Important observables are
the transmission coefficients Ta = 1− |S̄aa|2.

Fig. 1. Schematic drawing of the scattering process:
interaction zone and channels.

Often, the scattering process is in a broad sense chaotic
due to the complexity of the interactions, allowing us
to use statistical approaches. In the present context,
there are two different ansatzes, which are both based
on random matrices [32], referred to as the Mexico and
the Heidelberg approaches to stochastic scattering. In

the Mexico approach [7], S itself is modeled as a stochas-
tic quantity, and a minimum information principle yields
the probability measure

P (S)dµ(S) ∼ dµ(S)

|detβ(M−1)+2(1M − S〈S〉†)|
, (1)

where the following symmetries on S are imposed:

• no invariance under time-reversal:
S is unitary, β = 2;

• invariance under time-reversal:
– spin-rotation symmetry: S is unitary
symmetric, β = 1;

– no spin-rotation symmetry: S is unitary
self–dual, β = 4.

The input is the ensemble average 〈S〉, assumed to be
equal to the energy average, 〈S〉 = S̄. In spite of its
beauty and power in various applications [33], this ap-
proach suffers from some shortcomings. In particular,
energy and parameter dependences are not clear, e.g.,
when transitions between different symmetries and in-
variances are considered.

The Heidelberg approach [11, 34] is rooted in the mi-
croscopic description of the scattering process displayed
in Fig. 1. The total Hamiltonian reads

H =

N∑
n,m=1

|n〉Hnm 〈m|+
M∑
a=1

∫
dE |a,E〉E 〈a,E|

+
∑
n,a

(
|n〉
∫

dEWna 〈a,E|+ c.c.

)
, (2)

where H stands for the bound states Hamiltonian of
the interaction zone. The number N of these bound
states |n〉 has to be very large to apply statistical mod-
eling. The M channel states are denoted |a,E〉, their
couplings to the bound states Wna. The elements of
the scattering matrix are then given by

Sab(E) = δab − i2πW †aG(E)Wb, (3)
where Wa is the N component vector of the couplings to
channel a. The matrix resolvent

(963)
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G(E) =
1N

E1N −H + iπ

M∑
c=1

WcW
†
c

(4)

generalizes the Lorentz–Cauchy resonance to matrices.
As in one dimension, the imaginary part in the denomina-
tor will yield the width of the resonances. In the absence
of direct reactions, we may impose the orthogonality re-
lation

W †aWb =
γa
π
δab. (5)

One now assumes that the chaoticity renders the Hamil-
tonian H of the interaction zone random. One replaces
it by a random matrix chosen from non-compact versions
of the above symmetric spaces,

• no invariance under time-reversal:
H is Hermitian, β = 2;

• invariance under time-reversal:
– spin-rotation symmetry:
H is real symmetric, β = 1;

– no spin-rotation symmetry:
H is Hermitian self-dual, β = 4.

The probability distribution is Gaussian, as is justified
by universality [5]. In the Heidelberg approach one can
also employ random matrices H which model transitions
between symmetries and invariances in such a way that
the parameters have a well-defined physics meaning.

2. A new variant of the supersymmetry method

The supersymmetry method, put forward by Efe-
tov for disordered mesoscopic systems [35], drastically
reduces the number of integration variables for cer-
tain statistical models involving ensemble averages. It
was first applied to the Heidelberg approach by Ver-
baarschot et al. [9], who calculated the two-point correla-
tor 〈Sab(E1)Scd(E2)〉, and a series of further applications
followed, for reviews see Refs. [5, 36]. Particularly impor-
tant in the present context are the calculations of some
higher order correlators with and without time-reversal
invariance breaking [10]. The much desired distribution
of the scattering matrix elements, however, seemed to be
out of reach. Fyodorov et al. [17] eventually managed
to compute the distribution P (Saa(E)) of the diagonal
elements Saa(E). All these calculations use a representa-
tion of the observable in terms of determinants, such as

Gnm(E) =
∂

∂Jnm

det(G−1(E)− J)

det(G−1(E) + J)

∣∣∣∣∣
J=0

(6)

for the elements of the matrix resolvent (4). In these
determinants the random matrix H to be averaged over
must appear linearly, such that the random matrix H
can be moved into the exponent with the help of inte-
grals over commuting and anticommuting variables. For
the common Gaussian distributions, the ensemble aver-
age is then simply a Fourier transform in matrix space
and yields again a Gaussian-type of function which has a

twofold interpretation, in the original ordinary as well as
in a much smaller space of supermatrices, see the review
in Ref. [36].

Unfortunately, the requirement to start from de-
terminants outruled a calculation of the distribution
P (Sab(E)) for the off-diagonal scattering matrix elements
Sab with a 6= b along the above mentioned lines. In
Refs. [37, 38] we finally solved this long-standing problem
by developing a variant of the supersymmetry method
which is partly based on determinants and partly on
bilinear forms in the exponent. We wish to calculate
the distribution of the real and imaginary parts

℘s(Sab) = π
(
(− i)sW †aGWb + isW †bG

†Wa

)
(7)

of the scattering matrix, where
x1 = ℘1(Sab) = ReSab(E)

and
x2 = ℘2(Sab) = ImSab(E). (8)

The distribution is given as the filter integral

Ps(xs) =

∫
d[H] exp(−TrH2)δ(xs − ℘s(Sab)),

s = 1, 2, (9)
but easier to handle is its characteristic function

Rs(k) =

∫
d[H] exp(−TrH2) exp(−ik℘s(Sab)), (10)

which yields the distribution via Fourier backtransform.
Inserting the definition of the scattering matrix, we have

Rs(k) =

∫
d[H] exp(−TrH2) exp(− ikπW †AsW )

(11)
with

W =

[
Wa

Wb

]
and As =

[
0 (− i)sG

isG† 0

]
. (12)

The Hermitian matrix As contains the inverse ofH, mak-
ing the standard procedure for ensemble averaging im-
possible. Thus, we have to invert As to find a form in
which we can do the average over H. A Fourier trans-
form in W space does the job for us,

exp(− ikπW †AsW ) ∼
∫

d[z] exp

(
i

2
(W †z + z†W )

)
×detβ/2A−1s exp

(
i

4πk
z†A−1s z

)
, (13)

where z is an 2N component vector. However, the price
we pay is the occurrence of the determinant that ensures
the proper normalization. However, using a N compo-
nent vector ζ of anticommuting variables,

detβ/2A−1s ∼
∫

d[ζ] exp

(
i

4πk
ζ†A−1s ζ

)
, (14)

we achieve that H is fully moved into the exponent and
appears there only linearly. Hence, the ensemble aver-
age can be done as the usual Fourier transform in matrix
space, and supersymmetry becomes applicable. We no-
tice the different rôle of commuting and anticommuting
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variables. While the former are here used to rewrite a
bilinear form, the latter occur as usual for reexpressing
a determinant. We perform the Hubbard–Stratonovitch
transformation and find

Rs(k) =

∫
d[σ] (15)

× exp

(
−4βπ2k2N

v2
strσ2 − β

2
str lnΣ − i

4
Fs

)
with a 8/β × 8/β, i.e., 8 × 8 or 4 × 4 supermatrix σ for
β = 1, 2, respectively, and with

Σ =

(
σ− E

4πk
18/β

)
⊗ 1N +

i

4k
L⊗

M∑
c=1

WcW
†
c , (16)

where the matrix L is some superspace metrik indicat-
ing compact and non-compact degrees of freedom. The
Fourier variable k occurs at three places, v2 is the vari-
ance of the Gaussian ensemble. The structure of the su-
permatrix model (15) is very similar to the standard
ones for the generating functions of correlators [9], but it
crucially differs in the way how supersymmetry is bro-
ken. While commuting and anticommuting variables,
i.e. bosons and fermions, appear on equal footing in
the generating functions of correlators, this is not so in
the present case. The term Fs in the exponent is apart
from details a bilinear form in which only the boson–
boson block of Σ−1 is projected out by the vector W .

The unfolding procedure involving the limit N →∞ is
done by the usual saddlepoint approximation. The mas-
sive modes are integrated out and we eventually arrive
at the integral

Rs(k) =

∫
dµ(σG) exp

(
− i

4
Fs

)
(17)

×
M∏
c=1

sdet−β/2

(
18/β+

iγc
4πk

(
σG−

E

4πk
18/β

)−1
L

)
over the Goldstone modes σG. They describe the mass-
less rotations about the saddlepoints and are given as a
coset manifold in superspace. We integrate out all re-
maining anticommuting variables and are left with ordi-
nary integrals only, two for β = 2 and four for β = 1. The
integrals are structurally similar to the ones for the cor-
relators [9]. As they are quite bulky, we refer the reader
to Refs. [37, 38].

3. Analytical results versus numerical
simulations and experiment

To begin with, we compare our analytical results for
the case β = 2 with numerical simulations. It is a
special feature of the case β = 2 that the character-
istic functions and thus also the distributions for real
and imaginary parts, corresponding to s = 1, 2, are
the same. As Fig. 2 shows, there is a very good agree-
ment. All energies have to be normalized to the local
mean level spacing D. In sufficiently flat microwave cavi-
ties, the electromagnetic Helmholtz equation formally co-
incides with the two-dimensional stationary Schrödinger

equation. The experiments are of the scattering type as
sketched in Fig. 1, because microwave cables act as chan-
nels for the ingoing and outgoing waves. A series of mea-
surements carried out by the the Darmstadt group [24–
26] is ideally suited for testing our analytical results. We
first look into the regime of isolated resonances, in which
the average resonance width Γ is smaller than the mean
level spacing D. This corresponds to a frequency range
between about 10 and 12 GHz.

Fig. 2. Comparison of the analytical calculation for
β = 2 with numerical simulations. Characteristic func-
tion (left) and distribution (right) for M = 3 channels,
normalized energy E/D = 0.08 and normalized width
parameters γ1/D = 0.25, γ2/D = 0.32, γ3/D = 0.38.

Fig. 3. Comparison of the analytical calculation for
β = 1 with numerical simulations and experimental
data in the regime of isolated resonances. Character-
istic function of the real (left) and the imaginary (right)
parts for M = 3 channels and Γ/D = 0.234.

In Fig. 3 we compare the characteristic functions
for the analytical result, the numerical simulation and
the experimental data. The agreement is very good. We
then turn to the regime of overlapping resonances, re-
ferred to as Ericson regime, in which Γ is larger than D.
The frequency range considered is between about 24 and
25 GHz.

The distributions for the analytical result and the ex-
perimental data are displayed in Fig. 4. Once more,
the agreement is very good. In the Ericson regime,
one can come up with rather general arguments that
the distributions should become Gaussian. Indeed, while
the distributions in Fig. 4 are already very close to Gaus-
sian shape, the characteristic functions in Fig. 3 are dif-
ferent and imply heavier tails for the distributions.
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Fig. 4. Comparison of the analytical calculation for
β = 1 with numerical simulations and experimental data
in the regime of overlapping resonances. Distribution of
the real (left) and the imaginary (right) parts forM = 3
channels and Γ/D = 1.21.

4. Conclusions

With our analytical results for the distribution of
the off-diagonal scattering matrix elements, we solved a
long-standing problem in the Heidelberg approach. To
make the calculation feasible, we developed a new variant
of the supersymmetry method, which applies if the ob-
servable can (partly) be written as a bilinear form in
the exponent. A certain Fourier transform in a vector
space is then needed to perform the ensemble average,
which is a Fourier transform in matrix space. Combining
these ingredients, we put forward a method for the di-
rect calculation of distributions. As our method yields
the characteristic function of the desired distribution, we
also have, as a side result, the generating function of all
moments. Here, an important comment is in order. In
the regime of isolated resonances, the distribution has
heavy tails, and it is very well possible that higher mo-
ments do not exist. In such a situation, the construction
of the distribution from it moments by resummation is
bound to fail. Our approach that yields the characteris-
tic function directly and the distribution by its Fourier
transform does not suffer from such a shortcoming. For
further physics applications, it is important that our re-
sults yield a full analytical understanding of the transi-
tion form the regime of isolated resonances to the Eric-
son regime. Brouwer [39] gave an equivalence proof of
the Heidelberg and the Mexico approaches. As the latter
leads to highly cumbersome integrals even for small chan-
nel numbers M , our results also give an explicit handle
on the Mexico approach for arbitrary channel number.
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