Numerical Simulation of Dislocation Cross-Slip with Annihilation in Non-Symmetric Configuration

P. Pašša, M. Beneša, J. Kratochvíl

Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojánova 13, Prague, Czech Republic

Department of Physics, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, Prague, Czech Republic

 DOI: 10.12693/APHysPolA.128.737

PACS: 02.70.Bf, 61.72.Lk, 02.30.Jr

1. Introduction

Cross-slip is one of the most important single processes underlying the complex spatio-temporal developments in microstructure leading to hardening and the dislocation pattern formation [1]. Cross-slip allows the screw dislocations to change the slip planes and thus to bypass obstacles or to glide to annihilation with a screw dislocation of the opposite sign on a neighboring slip plane [2, 3].

In our previous works we studied the interaction and the cross-slip mechanism of two screw dislocations in a persistent slip-band (PSB) channel in a symmetric configuration [4–7] and obtained critical parameters for the cross-slip mechanism, such as critical slip-plane distance \(h_c \) and critical applied stress \(\tau_c \) required for cross-slip to occur. In this paper we focus on the non-symmetric problem of a screw dislocation \(\Gamma_1 \) gliding in a PSB channel which interacts with an edge dislocation \(\Gamma_2 \) bowing from a channel wall (see Fig. 1).

Fig. 1. Screw dislocation \(\Gamma_1 \) in primary plane \(\eta_1 \) and the bowing edge \(\Gamma_2 \) dislocation in the primary plane \(\eta_2 \). Burgers vector is parallel with the \(z \)-axis.

2. Model

The key assumption is that the motion of the dislocation \(\Gamma_i \) is governed by the law of the mean curvature flow

\[
Bv_i = T_i \kappa_i + F_i, \quad i \in \{1, 2\},
\]

where \(v_i \) is the dislocation velocity in the normal direction, \(\kappa_i \) the curvature and \(F_i \) represents the sum of forces per unit dislocation length exerted on the curve \(\Gamma_i \) in the normal direction, \(B \) denotes the drag coefficient. The term \(T_i \kappa_i \) represents the self-force expressed in the line tension approximation as the product of the line tension \(T \) and the local curvature \(\kappa_i \). The motion law (2.1) is treated parametrically — the planar curve \(\Gamma_i(t), i \in \{1, 2\} \) is described by a smooth time-dependent position vector function \(\mathbf{X}_i : S \times I \to \mathbb{R}^3 \), where \(S = [0, 1] \) is a fixed interval for the curve parameter \(u \in S \) and \(I = [0, t_{\text{max}}] \) is the time interval, \(t \) means time. The curve \(\Gamma_i(t) \) is given as \(\Gamma_i(t) = \{ \mathbf{X}_i(u, t), u \in S \} \). The motion law (2.1) with the addition of the tangential term \(\alpha_i \) improving the numerical stability [8, 9] reads as

\[
B\frac{\partial}{\partial t} \mathbf{X}_i = T_i \frac{\partial}{\partial u} \mathbf{X}_i + \alpha_i \frac{\partial}{\partial u} \mathbf{X}_i + \mathbf{F}_i, \quad i \in \{1, 2\},
\]

where \(\mathbf{X}_i^+ \) is a normal vector to \(\mathbf{X}_i \). For the complete description see [5–7].

The forcing term \(\mathbf{F}_i \) consists of several parts (here \(b \) denotes the magnitude of the Burgers vector):

- The force \(\mathbf{F}_\text{appl} = b\tau_{\text{appl}} \) caused by the applied resolved shear stress \(\tau_{\text{appl}} \). This force is constant.

- The force \(\mathbf{F}_\text{int} = b\tau_{\text{int}} \) caused by the interaction...
stress τ_{int} between dislocations computed using the Devincre formula (see [4, 10]).

- The force $F_{\text{wall}} = b \tau_{\text{wall}}$ caused by the stress τ_{wall} from PSB channel walls, in our case approximated by edge dislocation dipoles [11].
- The friction force $F_{\text{fr}} = 4 \, \text{MPa}$ is taken as the material constant [12].

The dislocation curve at the point X moves if the force term $F_{\text{eff}} = -T\kappa + F_{\text{appl}} + F_{\text{int}} + F_{\text{wall}}$ exceeds the lattice friction F_{fr}, i.e., Eq. (2.1) for each dislocation has the form

$$Bu = \begin{cases}
F_{\text{eff}} - F_{\text{fr}} & \text{whenever } F_{\text{eff}} > F_{\text{fr}}, \\
0 & \text{whenever } -F_{\text{fr}} \leq F_{\text{eff}} \leq F_{\text{fr}}, \\
F_{\text{eff}} + F_{\text{fr}} & \text{whenever } F_{\text{eff}} < -F_{\text{fr}}.
\end{cases}$$

(2.3)

The effective forcing terms F_{eff} in primary and cross-slip planes are different, i.e.,

$$F_{\text{eff}}^p = -T\kappa + F_{\text{appl}} + F_{\text{int}}^p + F_{\text{wall}}$$

(2.4)

for primary plane, and

$$F_{\text{eff}}^{cs} = -T\kappa + F_{\text{appl}}/3 + F_{\text{int}}^{cs} + F_{\text{wall}}$$

(2.5)

for cross-slip plane.

Whether the cross-slip mechanism occurs or not is determined by the cross-slip criterion (see [4]), i.e.,

- cross-slip occurs, whenever $F_{\text{appl}}/3 + F_{\text{int}}^{cs} > F_{\text{appl}} + F_{\text{int}}^p$,

- the motion in primary slip planes (primary slip) continues, whenever $F_{\text{appl}}/3 + F_{\text{int}}^{cs} \leq F_{\text{appl}} + F_{\text{int}}^p$.

The effective forces for the cross-slip criterion are determined in the screw parts of both dislocations.

3. Simulation results

The model was used in several configurations. We have selected two situations with different behavior of dislocation motion

- dislocation passing by in a channel without cross-slip or annihilation,

- edge and screw dislocation annihilation in a channel.

The numerical simulations were performed for copper at room temperature using the following input parameters:

- magnitude of Burgers vector $b = 0.256 \, \text{nm}$
- shear modulus [13] $G = 42.1 \, \text{GPa}$
- Poisson ratio $\nu = 0.34$
- PSB channel width [14] $1200 \, \text{nm}$
- drag coefficient $B = 1.0 \times 10^{-5} \, \text{Pas}$
- friction stress [12] $\tau_{\text{fr}} = 4 \, \text{MPa}$
- cross-slip plane angle $\lambda = 71^\circ$
- number of discretization segments $M = 200$

The configuration for the dislocation passing situation is presented in Experiment 1 and in corresponding Fig. 2. The screw dislocation located in the lower primary slip plane is gliding through the PSB channel and the edge dislocation is bowing from a channel wall into the upper primary slip plane (see Fig. 2b). As the dislocations approach each other the interaction force between dislocations increases, however, the distance of primary slip planes is rather high (40 nm) causing the attractive force to be weaker. Therefore, the screw parts of both dislocations continue in evolution in their respective primary planes (see Fig. 2c). Further evolution makes the dislocations overlap (see Fig. 2d). One can see that the mutual interaction force changed shape of the bowing edge dislocation. This situation was not observed in the symmetric case [4].

Experiment 1

The screw and edge dislocation interaction in a PSB channel without annihilation.

Initial condition:

- $\Gamma_v = (-600 + 1200u, 20, -900), \, u \in [0, 1]$.
- $\Gamma_e = (600, -20, 50 + 1000u), \, u \in [0, 1]$.

Physical parameters:

- $B = 10^{-5} \, \text{Pa s}$, $b = 0.256 \, \text{nm}$, $\nu = 0.34$, $G = 42.1 \, \text{GPa}$, $\tau_{\text{fr}} = 4 \, \text{MPa}$, $E^{(s)} = 2.15 \, \text{nJ/m}$.

Applied stress: $\tau_{\text{app}} = 20 \, \text{MPa}$.

Plane distance: $h = 40 \, \text{nm}$.

Numerical parameters: 200 nodes, uniform redistribution.

Results: Fig. 2.

Taking the same condition as in Experiment 1 but shortening the primary plane distance h to 20 nm, i.e. Experiment 2, one can observe different behavior. Both dislocations evolve under the applied stress $\tau_{\text{app}} = 20 \, \text{MPa}$.
 Numeric al Simulation of Dislo c ation Cross-Slip... 739

(see Fig. 3a). The interaction force from the edge dislocation is slightly higher than the force produced by the screw dislocation. Therefore, at a certain time the screw tip of the gliding dislocation is forced to enter the cross-slip plane but the bowing dislocation still evolves in its primary plane (see Fig. 3b and c). The screw dislocation is further attracted to the bowing dislocation and eventually annihilates in the upper primary plane (see Fig. 3d). After the annihilation there are two open dislocations slowly evolving and sticking to the channel walls (see Fig. 3e and f).

By changing the plane distance h we can approximately obtain the critical plane distance for the cross-slip at $\tau_{\text{app}} = 20$ MPa, i.e., for lower values of h the cross-slip mechanism occurs while for higher values does not. This is similar to the symmetric case computations in [4].

4. Summary

The non-symmetric configurations of dislocations in a PSB channel leading to the cross-slip mechanism and the dislocation annihilation may produce dipolar loops of the width of several nm. Our preliminary simulations illustrate the process of the mechanism and show that the values of the critical cross-slip parameters significantly decrease, namely the critical distance of the primary planes h_c.

Acknowledgments

This work was supported by the project P108/12/1463 of the Grant Agency of the Czech Republic.

References

Fig. 3. Experiment 2: Screw and edge dislocation interaction in a PSB channel with annihilation. Initial condition: $\Gamma_1 = (-600 + 1200u, 10, -900)$, $u \in [0, 1]$. $\Gamma_2 = (600, -10, 50 + 1000u)$, $u \in [0, 1]$. Physical parameters: $B = 10^{-5}$ Pa s, $b = 0.256$ nm, $\nu = 0.34$, $G = 4.21$ GPa, $\tau_{fr} = 4$, $E^{(c)} = 2.15$ nJ/m. Applied stress: $\tau_{\text{app}} = 20$ MPa. Plane distance: $h = 20$ nm. Numerical parameters: 200 nodes, uniform redistribution.