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We use 3D discrete dislocation dynamics technique to study a low-angle tilt boundary migration subjected
to applied shear stress at high temperatures, where di�usion signi�cantly contributes to the dislocation motion.
The model considers Peach�Koehler forces due to interactions between individual straight dislocation segments.
The model also addresses dislocation plasticity in a �eld of impenetrable incoherent spherical precipitates. Velocities
of the individual dislocation segments are calculated in relation to the crystallography of the material. Several
calculation series have been carried out for di�erent velocity and driving force relations. The results show that
there exists a critical applied shear stress, below which the low angle dislocation boundary cannot surpass the
rigid precipitates and remains in an equilibrium con�guration. This agrees with experimental results obtained in
creep tests of dispersion strengthened alloys. The critical stresses have been calculated also for situations where
the applied stress was decreased during the interaction between the low-angle tilt boundary and the precipitates.
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1. Introduction

The motion of dislocations is a key mechanism of
crystal plasticity. The 3D discrete dislocation dynam-
ics (DDD) model provides a detailed insight into complex
dislocation interactions and thus helps understanding de-
formation of materials. The 3D DDD model considers
di�usion processes [1], which considerably in�uence high
temperature plasticity [2]. We apply the model to a low-
angle dislocation boundary migrating in a �eld of rigid
precipitates and we use the results to elucidate creep be-
haviour of precipitate hardened materials.

2. Brief description of the model

The dislocation system is represented by short straight
segments arranged into continuous lines. The linear the-
ory of elasticity then allows to compute a local stress �eld
as a sum of �elds originating from all individual segments
and, optionally, the externally applied stress [3]. At the
centres of dislocation segments the local stress �elds gen-
erate the Peach�Koehler forces (PKFs). The velocity of
a dislocation segment is given by a linear function of the
PKF and a di�usion factor [1, 3]:

β(b) =
D0Ω

b2kT
exp

(
− Q

RT

)
, (1)

where Ω is an atomic volume, b is the length of Burgers
vector, k is Boltzmann constant, R is gas constant, T is
temperature, Ds = D0 exp(−Q/RT ) is the factor of self-
di�usion and Q is the activation energy of self-di�usion.
The following velocity relations have been used:
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2.1. Force decomposition according to material
crystallography, regular bcc or fcc slip systems

For each dislocation segment with Burgers vector b and
a direction ξ we �nd a slip plane normal and decompose
the Peach�Koehler force F to a climb FC and a glide
part FG:

n =
b× ξ
|b× ξ|

, FC = (F · n)n, FG = F − FC. (2)

If the slip plane normal n matches any of the nc ∈ Nc,
where Nc denotes the set of regular slip plane normals,
we take FG and compute
FG2

= (FG · nc)nc, FG1
= FG − FG2

. (3)
Otherwise, we set FG1

= 0 and FG2
= FG. The �nal

relation for segment velocity is
v = aGβ(b)FG1

+ aNCβ(b)FG2
+ aCβ(b)FC. (4)

We choose aG = 10, aC = 1 and aNC ∈ {1, 2}. The glide
in low-index crystallographic planes is much faster than
non-compact glide, which is comparable to the climb
motion.
Based on our previous work [4], we know that the par-

ticular variations in the aG as high as one or two orders
of magnitude have only minor in�uence on the calculated
threshold stress.

2.2. Force decomposition according to crystallography
and edge/screw character of the segment

At �rst, we decompose the dislocation with a Burg-
ers vector b to a pure edge and a pure screw component
with Burgers vectors be and bs, respectively. The PKFs
Fe and Fs are then evaluated separately for the pure edge
and screw components. Further, Fe is decomposed into a
glide component Fe,G and a climb component Fe,C (see
Eq. (2)) with respect to the slip plane of the disloca-
tion segment. If both edge force component Fe and the
dislocation segment lie in a crystallographic slip plane,
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we set the edge glide factor to Ae,G = aGβ(|be|), other-
wise we set Ae,G = aNCβ(|be|). The edge climb factor is
always Ae,C = aCβ(|be|). If the dislocation segment and
the screw force component lie in a crystallographic slip
plane, we set the screw factor to As = aGβ(|bs|), other-
wise we set As = aNCβ(|bs|). Finally, the total velocity
of the dislocation segment is

v=

(
bs
b

)2

AsFs+

(
be
b

)2

(Ae,GFe,G+Ae,CFe,C). (5)

2.3. Force decomposition according to crystallography
and edge/screw character of the segment,

where the dislocations encounter reaction forces
from the precipitates

The former kinetic relations do not consider any force
contributions originating in the precipitates. The dislo-
cations cannot pass through the matrix�particle interface
(surface of the rigid incoherent precipitates) and remain
pinned on the boundary, if the driving force is directed
inside the precipitate. However, if we add a reaction
force which just compensates that part of the driving
force pushing the dislocation to the phase boundary (see
Fig. 1), the �nal dislocation velocity will be tangent to
the phase boundary and its magnitude will be equal to

v = vs + ve, vs =

(
bs
b

)2

AsFs cosϑ,

ve =
Fe cosϕ

cos2 α
(be/b)2Ag

+ sin2 α
(be/b)2Ac

. (6)

For further details of the model, see [5, 6].
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Fig. 1. Reaction force.

3. Application to low angle tilt boundaries

Three distinct velocity relations in our 3D DDD model
have been evaluated for a dislocation system composing a
low angle tilt boundary (LATB). The system evolves un-
der an action of an externally applied stress σxz. The dis-
location system is represented by a simulation cell with
two planes of symmetry Y = 0 and Z = 0 with n equidis-
tant parallel edge dislocation lines in a starting position.
The simulation cell is replicated in a 3× 3 pattern to ap-
proximate periodicity along Y and Z axes. The material
and geometry parameters are summarized in the Table.
Initially, the local internal stresses do not a�ect the

planar shape of the tilt boundary due to the periodic

Fig. 2. (a,b,c) Evolution regimes of the tilt boundary
for velocity relations 1�3: � mode STOP, � mode
PASS, � mode PASS & SPLIT, (d) comparison of
critical shear stresses.

boundary conditions. After the tilt boundary encoun-
ters rigid precipitates, the evolution can continue in three
distinct regimes [5, 6]. For low applied stresses and/or
high initial dislocation densities, the boundary movement
ceases and the dislocations remain pinned by the precip-
itates (mode STOP). For high applied stresses and/or
low initial dislocation densities, the boundary either fully
overcomes the precipitates (mode PASS), or disintegrates
while a major part of the dislocations overcome the pre-
cipitates (mode PASS & SPLIT). The regimes for various
velocity relations are summarized in Fig. 2a�c.

The mode STOP is delimited from the modes PASS
and PASS & SPLIT by a critical shear stress, which



656 T. Záleºák, A. Dlouhý

TABLE
Input parameters of the model.

µ 80 GPa shear modulus
ν 0.3 the Poisson ratio
D0 2 cm2 s−1 di�usion factor
Q 240 kJmol−1 activation energy
T 873 K temperature
Ω (0.35 nm)3 atomic volume
b (0.2,0,0) nm the Burgers vector

∆t 3 ms time step
N 32 # of segments
n {7, . . . , 17} # of lines in a cell

aY; aZ 200 nm cell dimensions
h aZ/(n− 1) initial line spacing
c [-50,0,0] nm particle center
d 100 nm particle diameter
λ 200 nm particle distance
l 〈3, 8〉 nm segment length

can be expressed as a function of initial dislocation line
spacing

σC = Aσ/h. (7)
The factors Aσ listed in Fig. 2d have been obtained

from calculated data by a least-squares �tting. The re-
sults show that the critical shear stress is only weakly sen-
sitive to actual velocity formula, as long as the reaction
force of the precipitates is not taken into account. The re-
action force greatly facilitates the dislocation movement
on the interface between the matrix and the precipitates.
However, the critical shear stress is still present, though it
is considerably lower than in the former cases (Fig. 2c, d).
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Fig. 3. Evolution regimes of the tilt boundary for σxz

lowered from σxz ∈ {40, 60, 80} MPa when ε̇min had
been reached.

The critical shear stress occurs also in case where
the applied stress is lowered during the simulation
(a numerical stress-dip test). For initial applied
stresses σxz ∈ {40, 60, 80} MPa and line spacings h ∈
{12.5, 16.6̄, 33.3̄} nm, the σxz was lowered in integration
steps, where the strain rate ε̇(t) was equal to the min-
imum strain rate ε̇min. The evolution regimes are dis-
played in Fig. 3.

4. Discussion

There is considerable body of experimental evidence
showing that low angle dislocation boundaries form dur-
ing high temperature loading. This concerns many mate-
rials including dispersion strengthened alloys [7, 8]. Our
results show that the migration of LATBs at high tem-
peratures ceases when the applied stress is below criti-
cal shear stress even in case when the precipitates exert
a reaction force upon dislocation segments. This is in
line with numerous creep experiments, where threshold
stresses have been observed [7]. The critical shear stress
occurs also when the applied stress is lowered during the
LATB migration. A signi�cant di�erence in the two sets
of critical stresses has been detected.

5. Summary and conclusion

Our 3D discrete dislocation dynamics (DDD) model
considers multiple techniques how to calculate the dislo-
cation velocity from the Peach�Koehler forces. The re-
sults show that the critical shear stress σC is only weakly
sensitive to the particular technique, except when the re-
action forces from precipitates are taken into account.
For a particular loading conditions that place the system
into the domain PASS, the results of the numerical stress-
dip tests suggested that the threshold-like behaviour per-
sists for resulting stress levels lower than σC,dip. How-
ever, the values of σC,dip were generally lower than the
threshold stresses σC obtained in the calculations with
the constant loading conditions.
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