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In this work, we �rst recapitulate experimental �ndings under di�erent testing conditions available in the
literature. Next, we establish a theoretical framework for the analysis of evolution of deformation into a highly
localized pattern, where the theoretical approach with necessary adjustments to accommodate the constitutive
behaviour of the solid polymer is applied in the course of development. A detailed theoretical analysis of critical
stress conditions required for shear band initiation shows that in order to predict the material instability in
accordance with experimental �ndings it is necessary to introduce a multi-parameter type of constitutive relation.
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1. Introduction

Experimental evidence has shown that there are two
possible types of shear band behaviour in solid polymers.
They are both triggered by shear yielding. The �ne or the
thin bands are more localized and are not signi�cantly
a�ected by normal stresses, while the coarse bands are
highly in�uenced by the hydrostatic stress. From a theo-
retical perspective, shear bands represent a phenomenon
of coexisting regions of a di�erent strain rate. These re-
gions are usually separated by sharp interfaces. They be-
long to a wider class of material instabilities that emerge
as abrupt local changes in behaviour. Shear bands have
been observed in various types of material media like
granular materials, metals and plastics. It is now widely
accepted that one of the most important triggering mech-
anisms for the onset of shear band is a relationship de-
scribing a non-monotonic stress and strain rate. During
the process of deformation and viscoplastic �ow such a
relationship allows separation into two domains with dif-
ferent strain rates. This is understood to be the main
reason for the onset of shear band formation, where ho-
mogeneous steady ground state becomes unstable and
the system spatially separates into regions with low and
high deformation rate. During the process, the traction
and the traction rate remain continuous across the inter-
face, which separates both domains. Consequently, the
condition of traction and traction rate continuity across
the band serves as a starting point in development of the
corresponding shear band initiation criterion.

2. Classi�cation and shear band morphology

There are essentially two qualitatively di�erent mate-
rial instability phenomena that can occur in solid poly-
mers. The �rst one emanates from tensile yielding also
known as crazing, and the second, on which we focus in
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this work, namely shear yielding, results in shear band
formation. Both belong to the category of localized de-
formation processes and are very important from the per-
spective of ductility and brittleness of polymeric materi-
als. As we focus on shear banding phenomena, we �rst
discuss mechanisms involved in the nucleation, multipli-
cation, propagation and evolution of the shear bands.

Most semicrystalline polymers, particularly those with
pronounced amorphous structure [1], develop two kinds
of shear bands. The type of the band depends on the
loading conditions and temperature. The �rst type,
called the coarse band [2], occurs when the loading is
fast at a normal low temperature. Here the important
triggering mechanisms are stress concentrations. They
propagate fast and are usually con�ned to a very thin
localized area. Usually the process results in brittle fail-
ure along the band with moderate strain. In addition,
the plane strain conditions near the sharp notches and
thick sections de�ne favourable conditions for this type
of material instability behaviour.

In contrast to the �rst type, the second type appears
when the loading is slow and the temperature is high.
In this case, the shear zone consists of very �ne bands,
which spread on a larger region by mechanism of mul-
tiplication and ultimately end up in the form of ductile
fracture at considerable total strain. This usually takes
place after localized yielding and formation of a neck,
which ultimately spreads throughout the cross-section of
the specimen. The process leads to high strain gradients
concentrated on a thin area under the plane stress condi-
tions. In real system under the general operation condi-
tions both types represent the complementary competing
mechanisms responsible for formation of particular type
of material instability.

The most distinctive feature of shear band behaviour
in comparison with the tensile mode of instability in the
form of crazing is shown under the compressive load con-
ditions. Most glassy polymers undergo substantial plastic
deformation at room temperature and moderate strain
rates before the onset of fracture [3, 4]. Deformation
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develops non-homogeneously where only local regions in
the material are plastically deformed. Formation of in-
tense and highly concentrated shear bands and di�use
shear zones depends on a variety of factors like speci�c
loading conditions, ambient temperature, loading rate,
morphology and molecular structure of the shear zones.
In the case of macroscopically inhomogeneous defor-

mation, the qualitative understanding and quantitative
evaluation of the phenomenon is much more complicated,
and it is not completely developed from the theoreti-
cal point of view, due to the complexity of morphologi-
cal mechanisms of structural deformation in a semicrys-
talline material.

3. Shear yielding and structure of shear zones

From experimental evidence, it is known that the
coarse bands are a�ected by normal stress while the �ne
bands are not. Individual coarse shear bands appear un-
der conditions of high-speed deformation and low temper-
ature. Fine shear bands arranged in a broad di�use shear
zone originate under the low speed deformation and at
higher temperatures. At the same time, the hydrostatic
pressure e�ect is positive for the �ne bands and negative
for the coarse bands [5]. Under hydrostatic stress, poly-
mer may have a higher yield stress, whereas its ductility
decreases in compression.
The evolution of shear bands consists of two stages.

Usually the shorter bands are formed �rst, which later on
intersect with larger shear bands that have been triggered
by a notch in the specimen or by some other originator
of stress concentration within the specimen.
In compression tests, it has been observed that shear

bands evolve and spread under angles within the range
between 35 to 45 degrees with respect to the compressive
axis [6]. This is a generic range for the shear band inclina-
tion in broader family of glassy polymers and amorphous
metals. Another important experimental observation is
the band thickness, which is of the order of one µm in
magnitude. Experimental measurements based on trans-
mission electron microscopy (TEM) micrographs showed
that the deformation is concentrated in localized areas of
the specimen in the so-called discontinuous deformation
zones with the thickness in the range between 0.1 µm
to 0.5 µm.
Temperature dependence is also very important fea-

ture in the shear band evolution. The higher the ambi-
ent temperature, the higher the spatial density of coarse
shear bands. If the testing temperature is near the glass
transition temperature, usually a broad shear zone devel-
ops at an angle of 45 degrees to the principal stress direc-
tion. The ratio of ambient temperature versus glass tran-
sition temperature to a large extent determines the ma-
terial instability deformation mode. Under shear stress
conditions, the ratio indicates whether the coarse shear
band will form, or whether deformation will end up in
the di�use shear zone mode. If the ratio is about 0.75,
coarse shear bands or homogeneous shear zone can occur,
depending on a strain rate. For ratios above 1 di�use
shear zone becomes more probable.

4. The constitutive model

Because the strain localization and shear banding phe-
nomena are closely related to the combined action of
nonlinear plastic �ow, strain hardening, and intrinsic
strain softening, the mathematical model should be gen-
eral enough to accommodate such behaviour. To be able
to describe in mathematical terms the shear banding phe-
nomena in solid polymers, a multi-parameter constitutive
relation is used, which connects the critical shear stress,
a hydrostatic part of stress tensor, pressure sensitivity,
and a special evolution parameter in the form of strain
softening. The constitutive model is based on a general
framework of nonlinear viscoelastic �ow [7].
In the sequel, we give a brief outline of a general

theory. A spatial point in R3 is represented by a po-
sition vector x with respect to �xed orthonormal ba-
sis {ê1, ê2, ê3}, êi · êj = δij , I = δij êi ⊗ êj , v(x, t) is the
velocity at a spatial point x at a given instant of time t.
In description of three-dimensional deformation of solid
polymers, we use the Maxwell co-rotational model, which
serves as a starting point in further development. In this
model it is assumed that the velocity gradient is decom-
posed in an elastic and a plastic part with its symmet-
ric (D rate of deformation tensor) and skew symmet-
ric (W spin tensor) counterparts

L = LE +LP = (DE +WE) + (DP +WP). (1)

In what follows, we employ the multiparameter general-
ization of the Eyring viscosity [8, 9] η = η(p, τ̄ , β, s, T ),
where p is the pressure, β accounts for pressure de-
pendence, τ̄ is the e�ective stress, s is special evolu-
tion parameter describing strain softening, and T is the
absolute temperature. According to the well known
decompositions

σ = dev(σ) +
1

3
(Trσ)I = σ′ − pI, p = −1

3
Trσ,

τ̄ =
√

Tr(σ′σ′)/2,

D′ = dev(D) = D − 1

3
Tr(D)I,

˙̄γP =
√

2Tr(DPDP), (2)

in the sequel, we also neglect the volumetric part of the
plastic deformation in the constitutive equation, so that
the deviatoric part of the Cauchy true stress σ can be
connected with the plastic part of rate of deformation
tensor as

σ′ = 2η(p, τ̄ , β, s, T )DP. (3)

The elastic part of deformation is modelled by the hypo-
elastic rate formulation employing the Hooke law for
isotropic materials, so that the objective time derivative
of the true stress and the elastic part of strain of defor-
mation tensor can be written as
∇
σ = λTr(DE)I + 2µDE =

LE : DE = LE : (D −DP), (4)

where λ and µ are the Lame constants and the objec-
tive time derivative of true stress is represented by the
Jaumann rate
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∇
σ = σ̇ −W · σ − σ ·W> = σ̇ + Ω : L =

(σ̇ij + Ω ijklLkl)êi ⊗ êj ,

Ω =
1

2
(Tikδjl − Tjlδik + Tjkδil − Tilδjk)

×êi ⊗ êj ⊗ êk ⊗ êl. (5)

Combination among formerly de�ned relations leads to
the co-rotational Maxwell model
∇
σ+χσ′ = λTr(D)I + 2µD, χ = µ/η. (6)

Another alternative in mathematical description of ma-
terial behaviour of solid polymers with semi-crystalline
and amorphous structure is a compressible Leonov model
with formal decoupling of deformation for change in vol-
ume and isochoric response for change in shape of the
specimen. Here, the free energy of the system is deter-
mined by two state variables, namely the relative volu-
metric deformation J = det(F ), where F is the defor-
mation gradient, and the isochoric (volume preserving)
left Cauchy�Green strain tensor BE with det(BE) = 1.
Such a decomposition results in hydrostatic stress cou-
pling with the volumetric deformation, whereas the devi-
atoric stress is determined by the isochoric part of elastic
strain. For small volume deformations the compressible
Leonov model reduces to

σ = κ(J − 1)I + µB′E,

∇
BE = (D′ −DP) ·BE +BE · (D′ −DP),

J̇ = JTr(D), σ′ = 2ηDP, (7)

where κ is the bulk modulus, µ is the shear modulus.
The Jaumann co-rotational derivative of the isochoric
left Cauchy�Green strain tensor expressed in terms of
the vorticity tensor is given as
∇
BE = ḂE −W ·BE −BE ·W>. (8)

The Leonov model e�ciently describes separation of the
elastic hydrostatic and viscoelastic deviatoric stress re-
sponse and consistently depicts the yield behaviour of
solid polymers, where the plastic strain rate is described
by the stress activated Eyring �ow in�uenced by the
strain softening and pressure sensitivity and exhibits the
same mathematical dependence on material parameters
as previously de�ned viscosity function. It is a matter of
simple exercise to show that in the limit of small elastic
deformations both models are equivalent under the same
set of simplifying conditions. To prove that, one can take
the co-rotational derivative of the stress in Eq. (7), sub-
stitute the evolution equation for J and BE for small iso-
choric elastic an volumetric strains, and after some ma-
nipulation obtain the co-rotational Maxwell model given
by Eq. (6). Consequently, both models essentially de-
scribe the same kinematics of deformation and evolution
of true stress. In recent works, certain authors [10�12]
have tried to adjust and generalize the concept of a non-
Newtonian �ow rule with the Eyring viscosity to account

for more diversi�ed constitutive response under di�erent
�ow conditions. Result of past research is the viscosity
function of the form

η(p, τ̄ , β, s, T )=A0(T )τ0 exp

(
βp

τ0
−s
)

τ̄ /τ0
sinh(τ̄ /τ0)

, (9)

where the temperature dependent factor A0(T ) and the
characteristic stress τ0 are de�ned as

A0(T ) = A0 exp

(
∆U

RT

)
, τ0 =

kT

V
. (10)

Here A0 is a constant, ∆U is the activation energy, R is
the gas constant, V is the activation volume, and k is
the Boltzmann constant. Same authors describe strain
softening by means of an evolution equation

ṡ = ṡ0

(
1− s

s∞

)
˙̄γP, (11)

where ṡ0 determines the initial softening rate, with initial
value s0 and an equilibrium value s∞ in�uenced by the
equivalent plastic strain rate ˙̄γP.

5. Shear band initiation criterion

In what follows we use the co-rotational Maxwell model
as a prototype constitutive relation for mathematical for-
mulation of the shear band initiation criterion. Let the
total stress σ0 and the velocity gradient L0 both resolved
with respect to the �xed orthonormal basis as

σ0=σ0
ij êi ⊗ êj , L0=

[
∂v

∂x

]
0

=

[
∂vi
∂xj

]
0

êi ⊗ êj , (12)

represent spatially homogeneous �elds. Introduce a rank
one type of perturbation of velocity gradient over the
band of a thin surface � a singular material surface in
the limit of zero thickness. The jump operator is de�ned
as J·K = (in) − (out) = (+) − (−), so that the corre-
sponding jump in velocity gradient across the shear band
together with the jumps in its symmetric and antisym-
metric part representing the rate of deformation tensor
and the spin tensor, respectively, can be written as

JLK = L+ −L− =

s
∂v

∂x

{
= g ⊗ n, (13)

JDK =
1

2
(g ⊗ n+ n⊗ g) , JW K =

1

2
(g ⊗ n− n⊗ g) ,

where g designates amplitude of the jump, and n rep-
resents a normal to the band. Qualitative illustration of
the system is depicted in Fig. 1. By invoking the starting
assumption about homogeneity of the �elds σ0 and L0

it can be shown that in addition to traction continuity
across the band the corresponding traction rate continu-
ity has to be satis�ed as well. Now apply the correspond-
ing jump operator J·K across the shear band as a rank one
type of perturbation of velocity gradient, with kinemat-
ics de�ned in Eq. (13), on Eqs. (5) and (6) and obtainJσ̇K + Ω : g ⊗ n+ JχKσ′ =

λ (g · n)I + µ(g ⊗ n+ n⊗ g). (14)

In Eq. (14) JχK designates the corresponding jump of the
material parameter involving generalized viscosity. From
conditions for traction continuity n·JσK = 0 and traction
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rate continuity n · Jσ̇K = 0, which have to be ful�lled
across the shear band during the �ow process, we ar-
rive at

Q · g = JχKpn, (15)

where Q is given in the following form:

Q = (µ+ 1
2
n · σ · n)I + (λ+ µ)n⊗ n

+ 1
2
(t⊗ n− n⊗ t)− 1

2
σ. (16)

Here t = n · σ represents a stress traction exerted on

Fig. 1. Geometry and kinematics of deformation
across the shear band.

the shear band. In Eqs. (14), (15) and (16) kinematics
of deformation, stress �elds, as well as constitutive vari-
ables, pertain to the homogeneous state outside the band.
These �elds were originally designated with the sign (-)
which is omitted from the notation in the sequel. Equa-
tion (15) de�nes a relationship among vectors of ampli-
tude jump g, orientation of the band de�ned by the nor-
mal vector n, current state of stress, and the constitutive
parameters of the substance. In principle, the operatorQ
can be inverted, providing the solution for the amplitude
jump g across the shear band. Calculation requires a
careful inspection of potential �nite jump discontinuities
among material parameters and related �elds in the ex-
pression for the material constitutive function including
generalized viscosity. It is important to emphasize that
such an analysis should be made on the micromechanical
basis. The morphological restructuring in the shear band
induced by deformation instability strongly depends on
local material properties. During the process of deforma-
tion initial material morphology is transformed by yield
into oriented �brous microstructure. The process con-
sists of several stages beginning with the separation, tilt-
ing, shearing, fragmentation, and �nally terminates in
a �bre-bundle like orientation. In the �rst stage, the
continuous plastic deformation takes place before phe-
nomenon of necking sets in. During the initial stage
several elementary micromechanical mechanisms occur,
like rotation of lamellar structure, chain slip, and tilt
inside crystalline lamellae. In the second stage, the dis-
continuous transformation in the neck from the lamellar
to the �brous structure takes place. In the third stage,

the plastic deformation of the �bre structure becomes
predominant and leads to micro sliding of �brils relative
to each other resulting in the well-formed shear band.
Needless to say, the mathematical description of the pro-
cess on a micromechanical level is extremely di�cult.
On the other hand, the macroscopic framework of the

problem is well-developed. Additional analytical aspects
from a broader perspective of material instability in rate
dependent solids, which are required for determination of
the critical conditions for the onset of material instability,
are discussed in [13]. A general approach with details of
derivation of shear band initiation criterion for certain
classes of nonlinear viscoelastic �ow can be found in [14].

6. Final remarks

Shear bands can occur under applied tensile or com-
pressive stress. The process is triggered and controlled
by shear stress, which induces the lateral slip movements
of the material without void formation. Once the shear
band has formed, the further continuing deformation con-
centrates within the thin band where the strain gradient
continues to grow and remains con�ned in the narrow
localized zone of the material. During the process of de-
formation, the local increase of the temperature within
the localized zone can be detected. This has been con-
�rmed in some experimental and theoretical studies [15],
where the relationship among strain softening, adiabatic
heating and strain rate sensitivity at the onset of crit-
icality has been analysed in detail. Interactions among
pertinent �elds on the critical level can be perceived as a
mathematical description of a precursor of unstable de-
formation in the form of localized shear. However, pure
phenomenology does not provide a complete answer to
the shear band initiation problem. The main problem
in creating an adequate mathematical model is the di�-
culty of establishing a tractable connection between the
macro- and microscale via the Eyring function formal-
ism outside the shear band and the corresponding jump
of the function across the shear band. This requires fun-
damental understanding of deformation mechanisms on a
microscale. To link the phenomenology of the macroscale
with complex morphology of the microscale, we need to
extend the fundamental set of variables in constitutive
relation and proceed from there. For this reason, it is
feasible to introduce an additional geometric object rep-
resenting a con�guration structure within the band. Re-
search in regard to creating the corresponding multiscale
model is at the early stage of development.
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