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We study the heteroepitaxial growth of thin layers by means of the modi�ed phase-�eld model with the
incorporated anisotropy. The in�uence of elastic and surface energies on the layer growth is considered. For
numerical solution of the model, an explicit numerical scheme based on the �nite element method is employed.
The obtained computational results with various anisotropy settings demonstrate the anisotropic thin-layer pattern
growth.
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1. Introduction

Heteroepitaxy is an important technology for the con-
temporary electronic and photo-electric devices. Under-
standing the physics underlying heteroepitaxial growth
is crucial for development of new technologies. It is
well known that epitaxially deposited �lms can undergo
the Asaro�Tiller�Grinfeld instability [1] which depends
on the competition between surface and elastic energies.
In addition to the in�uence of strain, the experimen-
tal studies show that anisotropic surface energy plays
an important role as well. A dense array of pyramids
has been observed, e.g. in experiments on Si/Ge [2] and
SiGe/Si [3]. In agreement with such observations, we
extend the phase �eld model discussed in [4, 5] by in-
corporating the anisotropy in surface energy by means of
the Finsler geometry as in [6, 7].

2. Description of the model

Within the context of epitaxy, consider the system con-
sisting of solid and vapor phase. The spatial position of
phases and of the transition region between them are
described by the phase-�eld function p = p(t, x) which
attains the values 1 in the solid, 0 in the liquid, and val-
ues in between throughout the transition layer. In what
follows, the Einstein summation is used.
The isotropic phase-�eld model for heteroepitaxial

growth discussed in [4, 5] has the form
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where k is the inverse mobility, ρ � the solid-phase den-
sity, C1 is the surface tension, ξ is the di�use-interface

thickness, εij = 1
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is the strain tensor with u
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as the displacement vector, µ and λ are the Lamé con-
stants of the solid, εmp is the mis�t, δij is the Kro-
necker delta, and the functions h′(p) = 6p(1 − p), and
g′(p) = 2p(1− p)(1− 2p).
The stress tensor σij in the elastic energy density is

expressed by the Hooke law with the lattice mis�t

σij = 2µpεij + λpεkkδij + εmp (3λp + 2µp)δij ,

where µp, λp, and ε
m
p are the functions of the phase �eld p

given as follows:

µp = µh(p) + µv, λp = λh(p), εmp = εmh(p),

with h(p) = p2(3 − 2p) and µv describing stress�strain
relationship in vapor. The momentum conservation cor-
responding to the energy relaxation reads as

∇ · σij = 0 (2.2)

with corresponding boundary conditions given in Sect. 3.
The anisotropic surface energy is incorporated into the

model by means of the framework introduced in [6] and
used in, e.g. [7, 8]. For this purpose a continuous func-
tion φ : R2 → R+

0 called the Finsler metric is used, which
satis�es the properties such as φ ∈ C3+α(R2\{0}), φ2 be-
ing strictly convex, φ(tη) = |t|φ(η), t ∈ R, η ∈ R2,

λ̂|η| ≤ φ(η) ≤ Λ̂|η|, η ∈ R2, for two for suitable pos-

itive constants 0 < λ̂ ≤ Λ̂. This function plays the
role of distance measurement distinguishing directions.
Using function Φ, we de�ne the anisotropic operator
T : R2 → R2 as

T (η) = φ(η)Dφ(η) for η 6= 0, T (0) = 0,

where the DΦ =
[
∂η1Φ, ∂η2Φ

]
is the total di�erential

of Φ. Operator T modi�es the gradient ∇p with respect
to its direction when η being substituted by ∇p.
This allows to suggest the anisotropic form of Eq. (2.1)

for the thin-layer growth as
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= C1∇ · T (∇p)− 2C1
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endowed with the corresponding boundary and initial
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conditions given in Sect. 3 and solved in the spatial do-
main Ω = (0, L)× (0, L) and in the time interval (0, Tm).
For computational convenience, it is suitable to per-

form the dimensional analysis of the model Eqs. (2.3)
and (2.2). For this purpose, we introduce the spatial
scale L and the time scale τ and substitute for the vari-
ables x = Lx′, t = τt′ and correspondingly for ξ = Lξ′.
In particular, Eq. (2.3) becomes

L2kρ

C1τ
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∂t′
= ∇′ · T (∇′p)− 2

ξ′2
g′(p)− 1

ξ′
h′(p) (2.4)

×
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L
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λ

2
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)
,

and is solved in the spatial domain (0, 1)×(0, 1) and in the
time interval (0, Tm/τ). Computational results are then
re-scaled back to real variables and presented in Sect. 3.

3. Computational results

The system of model equations is solved in the square
domain Ω = (0, L) × (0, L) and within the time inter-
val (0, Tm), where L = 1 × 10−6 m and Tm = 600 s,
or 300 s, respectively. The bottom part of Ω is �lled by
solid (p = 1) whereas the upper part with vapor (p = 0).
On the bottom edge of Ω the boundary conditions are
prescribed as p = 1 and u = 0. On the upper edge
of Ω the boundary conditions are prescribed as p = 0
and σ · n = 0. Periodic boundary conditions are applied
at the lateral boundaries. The parameters are set for the
SiGe/Si system as in [3] and are summarized in the Table.

TABLE

Parameters of the SiGe/Si system.

Parameters Real values

k 1.00× 1014 [m s−1]

ρ 4.00× 103 [kg m−3]

C1 1.00 [ N m−1]

µ 1.59× 1011 [N m−2]

λ 1.48× 1011 [N m−2]

εm 0.01

µv 1.00× 106 [N m−2]

ξ 0.02× 10−6 [m]

We assume that the surface energy has the cubic
anisotropy characterized by the following function:

φ1(η) =

2∑
i=1

√√√√ηi2 + 0.02

2∑
j=1

ηj2,

in correspondence to a suitable two-dimensional repro-
duction of the anisotropy of the above mentioned mate-
rial. This anisotropy is rotated clockwise to the angle
π/4 to obtain the second example of anisotropy

φ2(η) = φ1(Rπ/4(η)),

with Rπ/4 denoting the mentioned rotation. The system
of Eqs. (2.3) and (2.2) together with boundary and ini-
tial conditions is transformed into the dimensionless form
as described in Sect. 2 � we set L = 1 × 10−6 m, and

τ = 4×105 s. Then it is numerically solved by the explicit
numerical scheme based on the �nite element method.
The algorithm has been implemented in FreeFem++ �
see [9]. The presented results were obtained on a trian-
gular structured mesh of 10000 elements. The solution of
two examples at di�erent times for the two anisotropy ex-
amples are presented. The thin layer solid-phase bound-
ary is identi�ed by the level set p(t, x) = 1

2 and the solid
phase is located below this level set.
In Fig. 1 the anisotropy φ1 is used. We observed the

development of facets and the surface evolves towards a
rectangle-like morphology.

Fig. 1. Time evolution of the epitaxial layer with the
anisotropy φ1.

Fig. 2. Time evolution of the epitaxial layer with the
anisotropy φ2.

For the anisotropy φ2 the obtained evolution is shown
in Fig. 2. Faceting occurs again and the surface evolves
towards a pyramidal morphology in agreement with [2, 3].
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4. Conclusion

We have presented the anisotropic phase �eld model
for heteroepitaxial growth of SiGe on Si. The numeri-
cal simulations showed the in�uence of surface and elas-
tic energies which results in faceted mounds. Depend-
ing on the anisotropy type, the �lm evolves towards an
array of rectangle-like islands or pyramids. The model
can be used for other thin-�lm systems by de�ning the
corresponding anisotropy and other material parameters
properly.
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