
Vol. 128 (2015) ACTA PHYSICA POLONICA A No. 3

Studying Static, Dynamic and Transport Properties of Mg3Bi2
F. Kayadibia,*, S.D. Günayb and Ç. Ta³sevenb

aDepartment of Physics, Science and Art Faculty, Kocaeli University, Umuttepe Campus, 41380, Kocaeli, Turkey
bDepartment of Physics, Faculty of Science, Yildiz Technical University, Davutpa³a Campus, 34210, Istanbul, Turkey

(Received January 19, 2015)

In this study, new potential parameters for Mg3Bi2 are proposed which is the Born�Mayer�Huggins type
potential. Static, dynamic and transport properties are studied for this material from 300 K up to 1600 K with
classical molecular dynamics simulation. Mechanical properties; like elastic constants (C11, C12, C13, C33, C44),
bulk modulus and shear modulus are found. All these data are compared with the limited number of experimental
and �rst-principle studies. Our results give a good description of the Mg3Bi2 system: lattice constants, α → β
transition temperature, melting temperature, di�usion coe�cient, density and mechanical properties are promising.
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1. Introduction

Scientists have investigated the alloys with magnesium
in recent years for its technological applications in auto-
mobile and aerospace industry because of its low density
and high strength [1, 2]. Mg3Bi2 has been used in tech-
nology at various �elds, such as Li-ion batteries [3], ther-
moelectric element [4] and photoconduction [5]. Some
groups have been focused on this material; the optical
and semiconducting nature of Mg3Bi2 had been investi-
gated by Watson et al. [6]. Bi ion concentration in mag-
nesium alloys had been studied and their e�ect on heat
resistance had been explained by Yuan et al. [7, 8]. Solid
Mg3Bi2 is a metal and the liquid Mg3Bi2 is a semiconduc-
tor so that material has a metal�nonmetal transition [9].
These studies have made it more interesting to work on
Mg3Bi2 molecule.
The structure of α-Mg3Bi2 is a hexagonal anti-La2O3

type structure with the space group of P3m1 [10]. The α
phase of Mg3Bi2 exists at room temperature up to 976 K
and β phase exists in the range 976�1094 K. Mg3Bi2 is
a superionic conductor in β phase that Barnes et al. [11]
and Howells et al. [12] had done neutron di�raction ex-
periments on β-Mg3Bi2 and concluded that they had ob-
served mobile Mg2+ ions with Bi3− ions forming the
rigid lattice. The electronic and structural properties of
liquidMg−−Bi alloy are investigated by Guo et al. [13].
First principles molecular dynamics simulation of liquid
Mg3Bi2 has also been calculated by Wijs [9] and Hao
et al. [14]. Structural and elastic properties of solid
Mg3Bi2 is calculated by Zhou et al. [15] and Sedighi
et al. [16] by �rst-principles calculations.
Despite these studies, there are a limited number of

studies on Mg3Bi2 and for this reason only some parts of
the physical properties exist. To our knowledge, static,
dynamic, mechanical and transport properties below the
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melting point are insu�cient in the literature for both
with simulation and experimental study. In this study,
we have performed classical molecular dynamics simula-
tions mainly to investigate these properties such as lat-
tice constants, radial distribution functions, mean square
displacements, di�usion coe�cient, heat capacity, bulk
modulus, shear modulus and elastic constants. A stan-
dard molecular dynamics simulation code (MOLDY) [17]
is used to calculate properties of Mg3Bi2 with a newly
parametrized potential.

2. Computational technique and molecular

dynamics simulation

2.1. Computational technique

In this study, we have developed semi-empirical po-
tential parameters for the Born�Mayer�Huggins (BMH)
form with Coulomb contribution that is given in Eq. (1):

ϕij(rij) =
ZiZje

2

rij
+A exp

(
−rij
ρ

)
− C

r6ij
. (1)

The �rst term is the Coulomb interaction between the ef-
fective charges Zij . Second term models the repulsion be-
tween the ions arising from the Pauli exclusion principle.
Third term is the dipole�dipole contribution. rij is the
distance between ions. Potential parameters are given
in Table I.

TABLE I

The values of parameters in the potential given for Eq. (1)
used for the MD simulations.

A [eV] ρ [A] C [eV A6] Z

Bi Bi 0.0 1.0 0.0 −2.04
Bi Mg 1113.544811 0.38333 0.0 0.0
Mg Mg 9547.96 0.21916 0.0 1.36

Parameters were adjusted to reproduce experimen-
tal data like lattice constants, bulk modulus and elas-
tic constants where lattice constant is an experimen-
tal value [10, 18] and elastic properties are from �rst-
principle calculations [15, 16]. Moreover, the Bredig
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phase transition of Mg3Bi2 has been taken into account
while obtaining potential parameters. Experimental
measurements show that the α→ β transition takes place
at 976 K [12] and melting at 1094 K, which is another
critical point for the potential parameter development.

2.2. MD simulation

Molecular dynamics simulation of Mg3Bi2, consist-
ing of 6655 particles with 3993 Mg2+ ions and 2662
Bi3− ions, were performed at di�erent temperatures up
to 1600 K approximately 500 K above the experimen-
tal melting temperature. Mg3Bi2 has the hexagonal
anti-La2O3 type structure (space group P3m1) with lat-
tice parameters of 4.674 and 7.416, respectively [18].
11× 11× 11 simulation box with periodic boundary con-
ditions is used to demonstrate the system. Simulations
have been carried out by the molecular dynamics pro-
gram, MOLDY [17]. We have used the Beeman algo-
rithm, which integrates the Newton equation of motion,
�nd positions and velocities of ions with the system time
step ∆t = 1 fs, here the total simulation time is 100 ps.
When the system reached equilibrium after 30 ps, we av-
erage over the following 70 ps to calculate physical prop-
erties. The Ewald sum technique is used to obtain long-
range Coulomb interactions. Our MD calculations have
been performed in two parts. In the �rst part, initial
con�guration of the system is the crystal structure and
the calculations are carried out from 300 K to 1600 K
by restarting from the previous runs with 50 K intervals.
In the second part, the system has been started as a liq-
uid structure at 1100 K. Here the initial con�guration is
generated such that it is not periodic in three dimensions
but with a regular minimum separation between center
of masses. Molecules are placed at an interval that is
called as skew start method. Second procedure is used
in order to compare our radial distribution function with
�rst-principle calculations where they also started their
simulation with same initial con�guration. All the cal-
culations except the second procedure were performed
in the constant pressure-temperature ensemble applying
the Nosé�Hoover thermostat and the Parrinello and Rah-
man (P-R) constant stress method to control the temper-
ature and pressure. Liquid structure simulations were
performed in NVE ensemble for the density 5.467 g/cm3.

3. Results and discussion

3.1. Radial distribution function
The radial distribution function, RDF, also called pair

distribution function is one of the most important tools
de�ning the structure of a system. The radial distri-
bution function describes how the density changes as a
function of distance from a reference particle, which is
de�ned as following in Eq. (2):

g(r) =
∆n(r)

ρ4πr2∆r
, (2)

∆n(r) is the mean number of atoms at a distance be-
tween r and r + ∆r from a given atom. ρ is the mean
atom density and ∆r is the width of the shell.

The radial distribution functions of Mg3Bi2 at 300 K
and 1000 K are calculated. At 300 K, initial con�guration
is a crystal and for every 50 K interval restarted from
the previous run up to 1000 K. For 1100 K, simulation is
initiated from liquid con�guration.

Fig. 1. The radial distribution functions of Mg3Bi2 at
300, 1000 and 1100 K.

In Fig. 1, the radial distribution functions of α-Mg3Bi2,
β-Mg3Bi2 and liquid Mg3Bi2 are given from our MD
calculations at 300, 1000, and 1100 K, respectively.
As shown in the graph, all the peaks are narrow and
sharp in the solid phase and as temperature increases
to the liquid phase they gradually become shorter and
wider because of the larger thermal oscillations of parti-
cles from their lattice points. At 1000 K, the gMgMg (r)
is rather broad and lower with less pronounced oscilla-
tions at larger r as compared to gBiBi (r) which indi-
cates that the cations are less structured than the anions
with a higher Mg ion mobility like in the liquid phase
so the gBiBi (r) has a high degree of correlation as ex-
pected. This is a characteristic feature of a superionic
(fast-ion) conductor [19] in which magnesium ions are
the mobile ions with the bismuth ions forming the rigid
lattice. Moreover we can also observe the �rst nearest
neighbor separations between Mg�Mg, Bi�Bi, and Mg�
Bi at 300 K and 1000 K from Fig. 1. First coordination
peaks indicate the �rst nearest neighbor separations at
3.62, 4.54, and 2.84 Å at 300 K for Mg�Mg, Bi�Bi, and
Mg�Bi, respectively, and it is also obtained from the same
�gure that values are 3.73, 4.59, and 2.80 Å at 1000 K,
which agrees with the experimental values 3.75, 4.58, and
2.80 Å [11]. Additionally coordination number of Mg�Bi
is calculated from Fig. 1 at 300 K with Eq. (3):〈

nij (r) ∆ (r) = 4πr2∆rρjgij (r)
〉
. (3)

Number of j particles around i particles in a shell of ∆r is
given by nij (r) ∆r. ρj is the number density of j particles
in MD cell. We have calculated Bi�Mg coordination num-
ber where Bi atoms are surrounded by 7 Mg atoms and
this result is in agreement with experimental data [20].
In Fig. 2, the radial distribution functions of liquid

Mg3Bi2 at 1100 K are compared with the �rst principle
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Fig. 2. The radial distribution functions of liquid
Mg3Bi2 at 1100 K. Solid line represents our MD
calculations and dashed line is the �rst principles
calculations [9].

calculations [9] and these calculations are in good agree-
ment with the Weber experimental data [21]. Both of the
simulation results have the initial con�guration of liquid
structure where density is Mg3Bi2.

3.2. Lattice parameters, density and thermal expansion

We have obtained the lattice parameters of Mg3Bi2
with a constant pressure calculation, which is allowing
the atoms in the unit cell relax to zero strain where it
minimizes the total energy of the system. BFGS energy
minimization strategy is used to search stationary point
that is implanted in GULP program. T = 0 K lattice
parameters are a0 = 4.61, c0 = 7.2389 and unit cell an-
gles are θ1 = 89.99, θ2 = 90.00 and γ = 119.99. Cohesive
energy per molecule is 4862.499 kJ/mol. Zhou et al. [15]
have found the cohesive energy 2575.36 kJ/mol from �rst
principle calculations. The calculated lattice parame-
ters at room temperature are in fairly good agreement
with available theoretical and experimental data [10, 15,
16, 18, 22�24]. All values of lattice parameters are given
in Table II. We have also calculated the lattice parame-
ters as a function of temperature. It has already been
known that α-Mg3Bi2 does not melt directly but un-
dergoes a transition to β phase at 976 K and β-phase
melts at 1094 K [11]. The constant stress method of
Parrinello and Rahman dynamics is used in the MD
simulation. With this method, the system's shape can
change and therefore both pressure and stress can be con-
trolled. Eventually, lattice parameters in each dimension
and each unit cell angles may change.
The variations of lattice constants a1, a2, c and the

angles θ1, θ2, γ with temperature are shown in Figs. 3�
5. The variation of density with temperature is given
in Fig. 6. It is a well-known fact that MD overesti-
mates the melting point of one phase crystal system.
For this reason we have estimated the melting point
about 1250�1300 K. This melting point will also be ob-
served in other temperature dependent physical param-
eters through this article. Here in Figs. 3�5, structural

Fig. 3. Variation of lattice constant a with
temperature.

Fig. 4. Variation of lattice parameter c with
temperature.

changes are monitored up to melting point. At around
500�600 K, lattice parameters a1, a2 for both direc-
tions change about 2%. At 850�900 K, lattice param-
eter a1, a2, c changes about 0.5%. Finally all three pa-
rameters change at MD melting point 1250 K�1300 K.
These changes are also observed for angles θ1, θ2, γ
in Fig. 5. These variations below the melting point may

Fig. 5. Variation of unit cell angles with temperature.
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TABLE II
Lattice constants (in Å) of α-Mg3Bi2.

Lattice constants
a c c/a

This work 4.61 7.24 1.571
[10] 4.666 7.401 1.586
[15] 4.67 7.41 1.586
[16] 4.66 7.333 1.573
[18] 4.674 7.416 1.586
[22] 4.671 7.403 1.584
[23] 4.67 7.40 1.584
[24] 4.65 7.38 1.587

be attributed to the α → β phase transition. In Fig. 6,
calculated density up to 1600 K compared with exper-
imental data. At 300 K, density of Mg3Bi2 is in good
agreement with experimental data. Again, it could also
be observed that experimental melting point density of
Mg3Bi2 (1100 K) and MD simulation melting point den-
sity of Mg3Bi2 (1250�1300 K) are also in good agreement.
We can conclude that our MD simulation calculations
with BMH potential display the structural distortions in
phase transitions at correct temperatures.

Fig. 6. Variation of density with temperature.

3.3. Di�usion of Mg2+ and Bi3− sublattice

The mean square displacement (MSD) data of atoms
in a simulation contains information on the atomic dif-
fusivity. If the system is solid, the kinetic energy is not
su�cient enough for atoms to reach a di�usive behavior,
in such a case the slope of MSD is zero. Nevertheless if
the system is not solid (e.g. liquid) then the MSD will
change in time and the slope is di�erent than zero where
ions di�use through the lattice. Mean square displace-
ment of ionic species is a way to calculate the di�usion
as follows:〈

r2α (t)
〉

=
1

3Nα

Nα∑
iα

〈
|riα (t)− riα (0)|2

〉
, (4)

where riα (t) is the position of the i-th ion at time t.
The mean square displacements of Mg2+ and Bi3− ions

from the room temperature up to 1300 K for 11×11×11
supercell are presented in Fig. 7 as a function of time.
It has been reported that α-Mg3Bi2 in solid state has a
second order structural transition to the superionic phase
at nearly 976 K [11]. Superionic phase transition can be
explained as: an order-disorder transition starts by the
collapse of Mg2+ sub-lattice and Mg2+ ions behave like
a liquid while Bi3− ions are still solid. In such a case
the behaviors of ions correspond to the superionic phase
transition. Di�usion for Mg2+ ions are almost zero up
to 1000 K. Above this point Mg di�usion starts and Bi
also shows signs of mobility that we do not expect at
this temperature. This could be commented that melt-
ing and superionic phase transition temperatures are rel-
atively too close to each other about 100 K for a MD
simulation. Otherwise, if there would be a larger gap
between transition and melting point temperature, we
should observe Bi ions totally immobile, preserving its
rigid sublattice at the superionic transition temperature.
It is a generally known issue that MD simulations over-
estimate the melting temperature [25]. Even there exist
no general rules that we would deduce from the previ-
ous studies that melting temperature of solid MD box is
about 20%�30% above the experimental data [26]. In this
study, melting point of the Mg3Bi2 molecule is also over-
estimated. At 1300 K, in Fig. 7, we could clearly observe
both sublattices totally collapsed. From this we could
deduce that melting temperature is about 1250�1300 K
where the experimental value is 1094 K.

Fig. 7. Mean square displacements of Mg+2 and
Bi−3 ions.

The di�usion constant of ions using the Einstein re-
lation can be calculated from the gradient of the MSD
graph〈

|riα (t)− riα (0)|2
〉

= 6Dt (5)

or di�usion coe�cient may also be calculated from the
velocity auto-correlation function (VACF). Following re-
lation shows VACF function

C (t) = 〈V i (t0) · V i (t0 + τ)〉 =

1

N

N∑
i=1

1

tmax

tmax∑
t0=1

V i (t0) · V i (t0 + τ), (6)
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where N is the particle number. Di�usion coe�-
cient (D) is

D =
1

3

∞∫
0

C (t)dt. (7)

Di�usion coe�cients of Mg3Bi2 molecules are shown
in Fig. 8, which are calculated from VACF and MSD
data, and display slightly di�erent behavior up to 650 K.
In spite of discrepancies at low temperatures, it should be
noted that this is a logarithmic plot and the values are too
small when it is compared with high temperatures. Both
of the calculations of di�usion coe�cient increase with
temperature and at about 1050 K Mg di�usion coe�cient
changes anomalously when compared to Bi. Di�usion
coe�cient of Mg ion is higher than Bi ion above the α→
β phase transition temperature.

Fig. 8. An Arrhenius plot of Mg3Bi2 from 300 K up
to 1600 K.

In literature there is a limited number of experimental
data on di�usion of Mg3Bi2 as far as we know. How-
ells [12] had measured the di�usion coe�cient of Mg ions
by neutron scattering experiment. He concluded that the
di�usion coe�cient is 2.7±0.3×10−9 m2/s for both β and
liquid phases. From Fig. 8, our estimated value of Mg ion
di�usion coe�cient for the liquid phase (2.18×10−9 m2/s
is in agreement with experimental data.

3.4. Enthalpy and heat capacity

α-Mg3Bi2 molecule has a phase transitions from α→ β
and β → melting point. For these reason it is a good
idea to investigate energy and related properties. En-
thalpy curve is a useful tool to observe phase transitions.
The enthalpy change ∆H = HT − H300 is presented
in Fig. 9. A discontinuity of data indicates some abnor-
mal phenomena are taking place like the phase transition.
In Fig. 10, the speci�c heat at constant pressure can be
determined from the variation of the internal energy of
the system with temperature as

CP (T ) =

(
∂E

∂T

)
P

. (8)

In Fig. 10, estimated value of heat capacity is equal to
classical value of the Dulong�Petit law. As the tempera-
ture increases, the slope of heat capacity changes gently

by the creation of magnesium Frenkel pairs. When we
compare Mg and Bi ions from the di�usion data, Mg ions
are inherently more mobile. As a result of these, it can
be stated that much of the Frenkel pairs are Mg. Be-
tween 800�1100 K, small deviations from the classical
heat capacity value can be attributed to the change of
lattice parameters a and c. From 1100 K to 1400 K there
exists a rapid increase in the heat capacity data. Here,
both superionic transition and melting point appear in
this temperature range. One can deduce this from MSD
in Fig. 7 and in general every phase change indicates it-
self in energy data. Here the phase transitions, α → β
(976 K) and β → melting point (1094 K), are so close
that it can be concluded that these peaks merged into
one peak.

Fig. 9. Enthalpy change of Mg3Bi2 with temperature.

Fig. 10. Heat capacity of Mg3Bi2 for di�erent supercell
sizes change with temperature.

3.5. Elastic constants, bulk modulus and shear modulus

Hardness of a material is determined with the elas-
tic constants, bulk and shear modules. These constants
are calculated by di�erent types of deformations of the
crystal. Bulk modulus can be measured by the Birch�
Murnaghan equation of state. When isotropic pressure
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is applied to a material, this equation is �tted to the vari-
ation of energy or variation of pressure with the volume

B = V

(
∂2U

∂V 2

)
= −V

(
∂P

∂V

)
. (9)

U is the energy, V is the volume and P is the pressure.
Equation of state data can be easily obtained from the
MD simulation by changing the volume around the min-
imum energy point. Bulk and shear modules can also be
calculated by the combination of elastic constants

B =
1

9
(C11 + C22 + C33 + 2 (C12 + C13 + C23)) , (10)

G =
1

15
(C11 + C22 + C33 + 3 (C44 + C55 + C66)

−C12 − C13 − C23) . (11)
These equations are Voigt de�nition of bulk and shear
modulus. Shear modulus describes the crystal's response
to shear stress. Elastic properties are estimated from the
second-order derivatives of the potential with respect to
strain

Cij =
1

V

(
∂2U

∂εi∂εj

)
. (12)

Here ε is the deformation. Since α-Mg3Bi2 is a non-
cubic material, C13, C33 should also be investigated in
addition to C11, C12 and C44. All the elastic proper-
ties are investigated by GULP program [27]. To the best
of our knowledge there are only two measured values of
α-Mg3Bi2 bulk modulus [15, 16]. Both of them are �rst-
principle calculations and di�erent from each other by
about 15%. Shear and elastic modulus data are only
compared with one calculated data [15]. Most of our re-
sults, except C33 and C44, are in good agreement with
quantum chemical calculation that is given in Table III.

TABLE III
Elastic properties of Mg3Bi2.

Ab initio Present work

bulk modulus [GPa]
45.81 [15]/
39.8 [16]

39.03

shear modulus [GPa] 7.96 [15] 7.92
C11 [GPa] 64.26 [15] 69.77
C33 [GPa] 103.64 [15] 41.55
C12 [GPa] 36.59 [15] 47.67
C13 [GPa] 39.53 [15] 25.15
C44 [GPa] 4.04 [15] 22.59

4. Conclusions

In this study, we have investigated Mg3Bi2 from room
temperature to 1600 K by molecular dynamics simulation
with newly developed potential parameters of BMH type
potential. Lattice parameters, elastic constants, bulk
modulus and shear modulus are the main observables
and reference data while we are developing the potential
parameters. As we increase the temperature, phase tran-
sitions, α→ β and β → melting point, are also taken into
account.

Lattice parameters are calculated as a = 4.61 Å and
c = 7.24 Å and compared with a considerable amount
of experimental and �rst principle data [10, 15, 16, 18,
22�24] which are in agreement with these results (Ta-
ble II). As the temperature increases from room temper-
ature to 1600 K, constant stress method of Parrinello
and Rahman dynamics is used where lattice parame-
ters change in each dimension so that lattice constant
a1 and a2 diverge from each other and angles do not
maintain their α = 90◦, β = 90◦, γ = 120◦ values.
Among the NPT ensembles constant stress method of
P-R is chosen in order to avoid uniform dilation or con-
traction of Mg3Bi2 crystal structure where it is experi-
mentally known that as the temperature increases hexag-
onal Mg3Bi2 structure changes into β-Mg3Bi2 struc-
ture by the non-uniform change of lattice parameters
and angles. Experimental density at room tempera-
ture is 5.95 g/cm3 and 5.465 g/cm3 at melting point.
Our results are 5.91 g/cm3 and 5.468 g/cm3, respec-
tively. Room temperature and liquid phase densities are
in agreement with experimental data but it should be
noted that MD melting point temperature is overesti-
mated about 200 K which is normal for one phase super-
cell simulation box system. Radial distribution functions
of liquid Mg3Bi2 are also compared with �rst-principle
calculations. Except Bi�Bi �rst peak, they roughly have
the same behavior.
RDF peak positions are in good agreement with exper-

imental values for both room temperature and melting
point data. Howells commented on his empirical di�usion
coe�cient value of Mg ion which it is the same both for
the superionic phase and liquid phase whereas we think
this should be reconsidered again because temperature
di�erence between these two points are 100 K and di�u-
sion constant could not be the same. Nevertheless, liq-
uid di�usion coe�cient derived both from mean square
displacement and velocity auto-correlation functions for
liquid phase con�rm that our results are compatible with
the experimental value. Sedighi [16] and Zhou [15] calcu-
lated the bulk modulus from �rst principle with a certain
amount of value (15%) di�erent from each other, which
makes these values somewhat unreliable and these data
needs to be veri�ed by experimental methods. Our data
signi�cantly resembles the latest �rst principle calcula-
tion by Sedighi [16]. Zhou et al. also obtain values of
elastic properties, like elastic constants, shear modulus.
Our calculated values are in agreement with shear mod-
ulus, C11, C12 and C13. All these results display the
features of promising classical interaction potential pa-
rameters for MD simulation of Mg3Bi2 which is valid for
a broad temperature range.
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