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Following the principles of renormalization group theory the typical experimental indications are discussed
that in ordered magnets with a three-dimensional spin the dynamics of the spins is controlled by a boson guiding
�eld instead by exchange interactions to the neighboring spins. The spins are, so to say, sensors to probe the
dynamics of the relevant boson �eld. It is evident that these �ndings are not complementary but fundamentally
di�erent from atomistic concepts. The bosons are essentially magnetic dipole radiation emitted upon precession
of the ordered moments. Within the individual domain the one-dimensional �eld has the character of a laser �eld.
The �eld aligns all spins along its axis. In order that in cubic magnets three-dimensional dynamic symmetry can
result a vector average over all one-dimensional boson �elds of the individual domains is necessary. It is argued
that this averaging process does not work in the critical temperature range of cubic EuS and EuO. As a result,
the critical behavior of EuS and EuO is that of the one-dimensional boson �eld of the isolated domain and agrees
with the critical behavior of the one-dimensional antiferromagnet MnF2. For the magnets with 1D boson �eld and
half-integer spin it is found that the rational exponents β = 1/3, γ = 4/3 and ν = 2/3 give an excellent account of
the mean exponent values over the most accurately known experimental data. These exponents obey the scaling
relation 2β = 3ν − γ.
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1. Introduction

One of the most remarkable results of renormaliza-
tion group (RG) theory was to have convincingly proven
that on approaching the magnetic ordering transition
from the paramagnetic side spins and interactions be-
tween spins become unimportant for the dynamics (of the
spins!) [1, 2]. According to Brézin et al. the symmetry
near the critical point is dynamically generated whatever
interactions one takes [3]. In other words, the critical
dynamics of the spins is not determined by exchange in-
teractions to the neighboring spins. This conclusion has
the severe consequence that atomistic models are inap-
propriate for the description of the critical spin dynamics.
Even more serious is the conclusion that the actual value
of the ordering temperature is also not determined by
the exchange interactions and therefore is di�erent from
the ordering temperature expected by atomistic models.
The magnetic ordering transition found by the algorithms
of RG theory has been called stable �xed point (SFP) in
order to distinguish it from the atomistic ordering tran-
sition. Much surprising is that RG theory �nds a phase
transition also when spins and interactions between spins
are excluded from dynamics. This strange result poses
the question: what drives the magnetic ordering transi-
tion (of the spins)? Independence of the SFP from the
exchange interactions becomes obvious from the fact that
in many magnets the observed transition temperature,
the SFP, is at a much lower temperature than conforms
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to magnon energies at zone boundary, the near neigh-
bor interaction strengths. Equivalently, it is observed
that magnons can persist much into the paramagnetic
phase [4, 5].
When exchange interactions and spin degrees of free-

dom are of no importance on the dynamics (of the spins!)
the dimensionalities of spins and exchange interactions
also are of no importance. This necessitates a completely
new classi�cation scheme of ordered magnets. When in-
teractions with neighboring spins are unimportant, the
spins must receive their dynamics from somewhere else.
The mysterious origin of the dynamically generated sym-
metry near the critical point [3] could, however, not be
clari�ed by RG theory.
Complete unimportance of atomistic structures for the

critical spin dynamics inevitably means that the dynam-
ics is that of the continuous magnetic medium. In terms
of RG theory, the new dynamic symmetry in the vicinity
of the ordering temperature is invariance with respect
of transformations of length scale. This is the de�ni-
tion of a continuum. Note that in a continuum there
are neither atoms nor spins. This is well known from
the elastic continuum that contains, by symmetry argu-
ments, no atoms. Continuous translational invariance
entails that the momenta of the excitations of the elastic
continuum, the sound waves, are conserved quantities.
In other words sound waves propagate to a good approx-
imation ballistic, independent of the thermal motion of
the atoms. Consequently the excitations of the contin-
uum (sound waves) are independent and di�erent from
the excitations of the atomistic system (phonons). Just
the analogous applies to the continuous and to the atom-
istic magnetic solid. Magnons are local excitations of the
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atomistic spin system, mainly due to nearest neighbor
exchange interactions.

Quite generally, the excitations of a continuous
medium are freely propagating bosons. We have called all
types of bosons of the magnetic continuum GSW bosons
giving tribute to Goldstone, Salam, and Weinberg [6].
In other words, the dynamics of the spins is controlled
not by exchange interactions but by the GSW boson
�eld. Conventional spin dynamics due to exchange in-
teractions to the neighboring spins has to be replaced
by the dynamics of the boson �eld. The spins are only
weakly coupled to the �eld, and follow the dynamics of
the �eld. Of course, interactions to the neighboring spins
still exist but these interactions determine the non rele-
vant magnon dispersions. As a consequence, atomistic
spin models have to be replaced by a �eld theory. When
all thermal energy is in the �eld, �eld theories need to
consider the energy degrees of freedom of the �eld exclu-
sively. However, before a �eld theory of magnetism can
be formulated, precise knowledge of the �eld quanta is
necessary. Unfortunately, RG theory could not specify
the nature of the �eld quanta, the GSW bosons. Re-
alistic �eld theories of magnetism therefore are not yet
possible. Available �eld theories of the critical dynam-
ics su�er from severe conceptual problems and are based
on heuristic assumptions on the nature of the �eld [7].
The assumptions on the �eld have been made in such a
way as to reproduce the critical exponents of the atom-
istic models that were considered as essentially correct.
This is, of course, an inadequate motivation. A histor-
ically more serious consequence of this erroneous �eld
concept was that RG theory appeared to be a method
supplementary to the atomistic models.

De�nite information on the nature of the �eld quanta
is provided by the observation that only in genuine Ising
magnets the spin dynamics is as predicted by atomistic
models. A key experiment in this respect was a neutron
scattering study of the sublattice magnetization of the
2D Ising antiferromagnet Rb2CoF4 [8]. Using neutron
scattering it was shown that the sublattice magnetization
of Rb2CoF4 precisely follows the Onsager exact solution
of the atomistic 2D Ising model [9, 10]. The Rb2CoF4

experiment allows one to conclude that the GSW �eld
bosons are essentially magnetic dipole radiation emit-
ted upon precession of the ordered magnetic moments.
The �eld has radiation character! Since the Ising spins do
not precess they are unable to generate �eld quanta (mag-
netic dipole radiation). The GSW boson �eld therefore
gets not populated and the dynamics is, in fact, atom-
istic, that is, magnon de�ned.

Genuine Ising magnets are rare exceptions. For the
large class of magnets with three-dimensional spin there
are no exactly solved atomistic models available to com-
pare the observed temperature dependence of the mag-
netic order parameter with theoretical predictions. Since
closed analytical solutions as for the 2D Ising model are
evidently not possible for systems with three-dimensional
spins, atomistic models make power series expansions for

Fig. 1. Normalized zero �eld spontaneous magnetiza-
tion data of EuO obtained by neutron scattering (trian-
gles) [33] and by 153Eu NMR (squares) [35] as a function
of reduced temperature squared. Macroscopic sponta-
neous magnetization data (circles) are also depicted [36].
Low temperature T 2 universality class conforms to the
expected isotropic dynamic symmetry. Critical expo-
nent of β ∼ 1/3 indicates one-dimensional boson �eld
in the critical range.

Fig. 2. Zero �eld 61Ni NMR frequencies of bcc nickel
as a function of absolute temperature squared [38].
Crossover from universal T 2 function to critical power
function with exponent β = 1/3 is at TCO = 420 K.
T 2 function means isotropic boson �eld (Seff = 1/2)
while β = 1/3 is indicative of the 1D boson �eld. Criti-
cal range is as large as ∆T/TC = 0.33.

the thermal decrease of the order parameter at T = 0
and for the rise of the order parameter at Tc. Famous
examples are the Bloch asymptotic T 3/2 function for the
thermal decrease of the spontaneous magnetization of
the isotropic ferromagnet and the Onsager critical power
function ∼ (TN −T )1/8 for the atomistic 2D Ising model.
The two power functions are the leading term of a power
series expansion at T = 0 and at T = TN, respectively.
The width of the critical range of the atomistic mod-
els is, so to say, zero. This is in sharp contrast to the
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large validity range of the observed critical power func-
tions due to �eld dynamics (see discussion of NMR data
in Fig. 1 and Fig. 2). The observed critical power func-
tions hold up to a considerable distance away from crit-
ical temperature. In fact, universality can be de�ned as
the typical thermodynamic behavior of a �eld of freely
propagating bosons. T = 0 is also a critical temperature
in the sense that the dynamics in the vicinity of T ≈ 0
is due to a boson �eld. The �critical� power functions
at T = 0 are power functions of absolute temperature.
It is now empirically well established that the two crit-
ical power functions at T = 0 and at T = Tc overlap
and give complete description of the magnetic order pa-
rameter for all temperatures in the ordered state [11, 12].
In other words, the dynamics of ordered magnets (with a
three-dimensional spin) never is controlled by atomistic
magnons.

According to the di�erent magnon dispersions of fer-
romagnets and of antiferromagnets atomistic spin wave
theory expects that thermal decrease of the order param-
eter should be di�erent for ferromagnets (∼ T 3/2) and
for antiferromagnets (∼ T 2). This is in disagreement
with the experimentally observed universality [11, 12].
Universality means a spin structure independent dynam-
ics. In other words, the observed universal spin dynamics
cannot be de�ned by magnons. Another strong experi-
mental indication for �eld dynamics is that the dynam-
ics is di�erent in magnets with integer and half-integer
spin [11�13]. This observation is also in contrast to atom-
istic spin wave theory. Since integer and half-integer
spins precess di�erently they emit di�erent types of �eld
quanta. The dynamics of the �eld (its heat capacity)
therefore is di�erent for the two spin species.

Another very important term of RG theory is rele-
vance. Relevance can be considered as a dynamic sym-
metry selection rule. When bosons are the relevant exci-
tations all thermal energy is in the boson �eld. The spin
system is thermodynamically not active and receives
its dynamics through a weak coupling from the �eld.
The coupling strength is given essentially by the emis-
sion probability for magnetic dipole radiation. Local
interactions to neighboring spins (magnons) are atom-
istic details that are not relevant for the �eld dynamics
and therefore can completely be ignored by �eld theories.
Note that the �eld dynamics is independent of spin struc-
ture. It therefore su�ces to consider the energy degrees
of freedom of the �eld exclusively. This is an enormous
analytical simpli�cation (in principle). It is evident that
the excitation spectrum of the �eld is di�erent from the
excitation spectrum of the atomistic magnons. Note that
the only thermodynamic observable of a boson �eld is its
heat capacity. Transfer of thermal energy from inter-
acting spins to the boson �eld occurs at the crossover
from the Curie�Weiss susceptibility to critical paramag-
netic susceptibility. In the two temperature regions the
susceptibility is described by di�erent temperature func-
tions. Typical for a crossover is an analytical change in
the temperature dependence.

Since the coupling of the �eld bosons to the atomistic
background is weak, the mean free path of the bosons is
large. Note that the dispersion relation of freely propa-
gating bosons is a simple power function of wave vector
over a large range of energy. This results into a heat
capacity of the �eld that is a simple power function of
temperature over a large range of temperature. Thermal
decrease of the magnetic order parameter with respect
to saturation at T = 0 is given by the heat capacity of
the GSW boson �eld, and is identical for ferromagnets
and for antiferromagnets of the same symmetry class.
In other words, the temperature dependence of the heat
capacity of the boson �eld can be measured in a twofold
way, either by direct heat capacity measurements or by
the thermal decrease of the magnetic order parameter.
Note, however, that the heat capacity of the GSW bo-
son �eld dominates the observed heat capacity only if
it is larger than the heat capacity of the Debye boson
�eld (∼ T 3). This is the case if the ordering tempera-
ture is much lower than the Debye temperature [14]. A
superposition of the heat capacity of the Debye boson
�eld (∼ T 3) and the heat capacity of the GSW boson
�eld (∼ T ε) is not observed.

Generation of magnetic dipole radiation by magnetic
moments is by stimulated emission along precession axis.
The axial radiation characteristic provides vector charac-
ter to the GSW boson �eld, and is an important source
of magnetic anisotropy. As is well known, within any
magnetic domain all spins are oriented parallel, quite in-
dependent of the anisotropy of the exchange interactions.
We must assume that axial spin alignment is due to the
coupling of the spins to the one-dimensional boson �eld.
Within any domain the boson �eld resembles a laser �eld.
Another example that the GSW boson �eld supports
collinear spin order is provided by the amorphous fer-
romagnets. Amorphous ferromagnets with a su�ciently
high ordering temperature exhibit collinear spin struc-
ture in spite of random local exchange anisotropies. If
not too large, local anisotropies are not relevant and
seem to be completely absent. Only for spin glasses local
anisotropies are strong enough to be relevant.

Mono-domain 1D dynamic symmetry in bulk magnets
is realized only in magnets with axial lattice structure
such as MnF2 with tetragonal rutile structure. At the
Néel transition of MnF2 only the longitudinal suscepti-
bility diverges [15]. This characterizes the Néel transi-
tion as a one-dimensional phase transition. As a con-
sequence of the one-dimensional boson �eld the Mn2+

moments are aligned parallel to tetragonal c-axis. Since
magnon dispersions [16] as well as the spin of the
Mn2+ ion are isotropic, it becomes evident that the order-
ing transition is not driven by magnons but by the one-
dimensional �eld. The surprisingly strong axial magnetic
anisotropy that couples the magnetic moments rigidly to
�eld axis (the crystallographic c-axis) is in sharp con-
trast to the isotropic spin and to the isotropic magnon
dispersions of MnF2. The spin-�op �eld of MnF2 is as
large as 120 kOe [17]. As concerns the origin of the
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1D boson �eld we can only say that it must result from
the axial (tetragonal) lattice structure. Note that the
magnetic continuum has much similarity with the elastic
continuum.

For cubic bulk magnets with an equal domain orienta-
tion along all three space directions, isotropic dynamic
symmetry must be the result of an averaging process
over all one-dimensional boson �elds of the individual do-
mains. This averaging process is completely unexplored
by available �eld theories but it has the character of a
vector sum. Condition for an average to be formed seems
to be that the boson �elds of neighboring domains are in
dense contact with each other. The mean free path of
the GSW bosons therefore must be at least as large as
the linear dimension of the domains. In other words, the
ratio between mean free path of the GSW bosons and lin-
ear dimension of the domains is an important mesoscopic
parameter for �eld dynamics. This view could be proven
as essentially correct by investigations of the ferromag-
netic saturation process of a bcc iron sphere using neu-
tron scattering [18]. Upon ferromagnetic saturation the
domains with spin orientations parallel to �eld axis in-
crease on the expense of the domains with a di�erent spin
orientation. Before the �eld for saturation is reached it
happens that the size of the remaining domains becomes
larger than the mean free path of the GSW bosons.

In Ref. [18] evidence of a �eld induced dimensionality
crossover from isotropic to one-dimensional boson �eld
has been obtained. Note that the saturated ferromagnet
is in the mono-domain state and, in principle, 1D. In our
context it is important to note that one-dimensional dy-
namic symmetry does not request that the whole sample
is in the single domain state. It su�ces that the do-
mains are su�ciently large to be decoupled. RbMnF3

turned out to be a suitable example to illustrate that
one-dimensional dynamic symmetry can be realized in a
cubic bulk magnet. Magneto-elastic coupling is unusu-
ally weak in RbMnF3 [19]. As a consequence, magnetic
domains are large. In fact, it is observed that thermal de-
crease of the sublattice magnetization of cubic RbMnF3

follows the same T 5/2 function as the sublattice magne-
tization of tetragonal MnF2 [20]. The T 5/2 universality
class has been identi�ed as characteristic for the mag-
nets with 1D boson �eld and half-integer spin [11, 12].
In other words bulk RMnF3 consists of a relatively small
number of decoupled large domains and exhibits 1D dy-
namic symmetry of the isolated domain. It is evident
that we have to assess the (dynamic) dimensionality of
magnets to the dimensionality of the relevant GSW bo-
son �eld and not to the dimensionality of the non rel-
evant magnons. Curiously, cubic RbMnF3 has to be
characterized as a one-dimensional bulk antiferromagnet
in spite of isotropic magnon dispersions [21]. In other
words, the dimensionality of the magnon dispersions can
be di�erent from the dimensionality of the boson �eld.
In conformity with the spin structure independence of
the GSW boson �eld, domain formation also is indepen-
dent of spin structure. This illustrates that magnons are

microscopic excitations on the length scale of the inter-
atomic distance while GSW bosons are global excitations
of the magnetic continuum. Since the two systems dif-
fer by translational symmetry (discrete and continuous)
they have di�erent dispersion relations and interact only
weakly [22].

In RbMnF3 the mean free path of the GSW bosons
seems to be shorter than the linear dimension of the
domains for all temperatures. The observed GSW bo-
son �eld is one-dimensional for all temperatures. It can,
however, quite generally be assumed that the mean free
path of the GSW bosons decreases as a function of in-
creasing temperature. It therefore appears possible that
the ratio between mean free path of the bosons and lin-
ear dimension of the domains falls below some critical
value such that a dimensionality crossover from isotropic
to one-dimensional boson �eld can occur as a function
of increasing temperature. As experiments show, when
this crossover occurs it does not manifests as a separate
crossover event but coincides with the common crossover
(at TCO) from universal T ε function at low tempera-
tures to critical power function at Tc. This crossover
then assumes a twofold meaning. In other words it ap-
pears possible that in cubic magnets the universality class
is isotropic in the range of the T ε function but one-
dimensional in the critical temperature range. The aim
of this communication is to provide experimental evi-
dence for this scenario using EuS and EuO as prominent
examples.

On discussing critical exponents it is important to note
that the observed critical exponents are due to �eld dy-
namics and, therefore, should not be compared with the
atomistic model predictions. Most confusing is that the
observed exponents at critical point often are quanti-
tatively not much di�erent from atomistic model pre-
dictions but they can occur in a strange context. For
instance, the critical exponents of MnF2 with isotropic
pure spin moment are close to the atomistic 3D Ising
model predictions [15]. A much clearer distinction be-
tween atomistic exponents and �eld exponents is possible
at T = 0. For many cubic ferromagnets with half-integer
spin (EuS, EuO, GdZn, CrB3) thermal decrease of the or-
der parameter with respect to saturation at T = 0 is by
T 2 function and not by the Bloch atomistic T 3/2 func-
tion (see discussion of Fig. 1 and Fig. 2). As we have
mentioned the universal T ε functions are independent of
spin structure but they depend on the dimension (d) of
the �eld and on whether the spin quantum number is in-
teger or half-integer. For d = 3, 2, 1 the exponents are
ε = 2, 3/2 and 5/2 for magnets with half-integer spin but
ε = 9/2, 2 and 3 for magnets with integer spin [22].

As experiments show, the critical exponent β of the
one-dimensional boson �eld is rather close to β = 1/3,
independent of spin quantum number. On the other
hand, for the magnets with isotropic boson �eld the crit-
ical exponent is β = 1/3 for integer spin but β = 1/2
for half-integer spin. Quite generally, the mean �eld ex-
ponent seems to be characteristic for isotropic dynamic
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symmetry [23]. The di�erence to the atomistic mean �eld
model is, however, that the critical power function of the
boson dynamics holds up to a considerable distance away
from Tc.

2. Analysis of experimental data

We start discussion of available experimental data for
the magnetic order parameter by focusing on magnets
with half-integer spin and isotropic boson �eld (T 2 uni-
versality class). Isotropic boson �eld can occur also in
non cubic magnets if (�eld) anisotropy is su�ciently weak
and not relevant. Complete unimportance of an assumed
�nite but weak anisotropy proves stability of the univer-
sality classes. This is condition that all magnets can �t
a few universality classes.
One of the historically �rst experimental identi�cations

of the two universal power functions of T 2 and ∼ (TN −
T )1/2 was reported for the weak ferromagnet MnCO3

with rhombohedral lattice structure [24]. The spin struc-
ture of MnCO3 is slightly canted antiferromagnetic such
that in the basal plane a weak ferromagnetic component
results. The ferromagnetic component with a saturation
magnetic moment of only 0.033 µB/Mn2+ allows one to
study this antiferromagnet using macroscopic magnetiza-
tion measurements. As early as in 1959 it was found that
at low temperatures the spontaneous ferromagnetic mo-
ment follows T 2 temperature dependence and that the
critical exponent is to a good approximation β = 1/2.
We can assume that the two exponents are representative
also of the main antiferromagnetic component. As we
will see, the two exponents (ε = 2, β = 1/2) observed
for MnCO3 are con�rmed by other magnets with cubic
lattice symmetry and half-integer spin and can be con-
sidered as standard behavior of this class of magnets.
In particular, mean �eld critical exponent is typical for
isotropic dynamic symmetry [23]. In other words, in
MnCO3 no dynamic dimensionality crossover occurs in
the range 0 < T < TN.
We should note that ε = 2 and β = 1/2 indicate an

equivalent behavior at T = 0 and at T = Tc. Note that
the T ε function describes the deviations from saturation
at T = 0. Equivalently, the deviations from Tc must be
written as Tc−T ∼M1/β . In other words 1/β = ε means
a formal identical behavior at T = 0 and at T = Tc.
Another example of the combination ε = 2 and β =

1/2 is hexagonal RbMnCl3 with S = 5/2 due to the Mn2+

ion [25]. Figure 3 shows normalized sublattice magnetiza-
tion data obtained using neutron scattering as a function
of reduced temperature squared. Scatter of the exper-
imental data points is relatively high but, nevertheless,
T 2 function at low temperatures and critical power func-
tion with mean �eld exponent β = 1/2 are reasonably
resolved.
A famous cubic magnet to further con�rm the combi-

nation T 2 and ∼ (TN − T )1/2 is ferrimagnetic yttrium
iron garnet (YIG) with sum formula Y3Fe5O12 [26, 27].
In YIG the spin of the Fe3+ ion is S = 5/2.
As for the weak ferromagnet MnCO3 the spontaneous

Fig. 3. Normalized order parameter of antiferromag-
netic RbMnCl3 as a function of reduced temperature
squared [25]. The typical critical power functions at
T = 0, T 2, and the critical power function of mean �eld
type at TN of the magnets with isotropic boson �eld and
half-integer spin (S = 5/2) are reasonably con�rmed.

Fig. 4. Normalized spontaneous magnetization
of the ferromagnetic component of ferrimagnetic
Y3Fe5O12 (YIG) as a function of reduced temperature

squared [26, 27]. The combination T 2 and ∼ (TN−T )1/2

is con�rmed for this cubic ferrimagnet with S = 5/2.

magnetization of YIG can be sampled on account of
the ferromagnetic component using macroscopic mag-
netization measurements [28]. Figure 4 shows normal-
ized spontaneous magnetization data of the ferromag-
netic component as a function of reduced temperature
squared. Crossover from low temperature T 2 function
to critical power function of type (TN − T )1/2 is appar-
ent. We should note that for lower temperatures then are
shown in Fig. 4 crossover to a second T 2 function with
larger pre-factor follows [28]. We have called this type of
crossover between identical power functions of absolute
temperature amplitude crossover. In other words, the dy-
namic symmetry of YIG remains isotropic down to the
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lowest temperatures. In the spontaneous magnetization
of YIG this amplitude crossover is at TAC ≈ 260 K [28].
An amplitude crossover indicates that a non relevant pa-
rameter changes appreciably with temperature without
getting relevant. It is a typical characteristic of RG the-
ory that non relevant parameters enter the pre-factor of
the universal power function only and are rather hidden.
In other words, the universality classes are surprisingly
stable. An amplitude crossover is a threshold induced
event indicating a considerable (monotonous) change of
a non-relevant parameter. Only when the non-relevant
parameter changes strongly and �nally becomes relevant
a crossover to another universality class (exponent) is
induced.

Fig. 5. Normalized macroscopic spontaneous magneti-
zation of a spherical sample of the cubic ferromagnet
GdZn [13] re�ecting the typical behavior of a magnet
with isotropic boson �eld and half-integer spin: the uni-
versal power function at T = 0 is T 2 and the exponent
of the critical power function is β = 1/2. Isotropy is,
however, not self evident in the state with ferromagnetic
saturation (see text).

GdZn is a metallic ferromagnet with cubic lattice sym-
metry and spin S = 7/2 due to the Gd3+ ion [29]. For not
quite clear reasons, in macroscopic magnetization mea-
surements on a spherical GdZn sample the isotropic ex-
ponents (ε = 2, β = 1/2) are observed. Figure 5 shows
normalized spontaneous magnetization data measured on
a GdZn sphere as a function of absolute temperature
squared. These data con�rm T 2 universality class at low
temperatures and critical power function of mean �eld
type. Note the �normal� width of the critical range of
∆T/TC = 0.16.
Isotropy in macroscopic magnetization measurements

is surprising. As we have mentioned, in the state of ferro-
magnetic saturation with all moments aligned parallel to
�eld axis, one-dimensional behavior can be anticipated.
We must assume that in GdZn in spite of ferromagnetic
saturation the boson �eld is isotropic. This might be
due to the spherical shape of the sample and due to a
large mean free path of the GSW bosons. Di�use scat-
tering of the bosons on the inner surface of the sample

can homogenize the boson �eld. Additionally scatter-
ing of the GSW bosons with conduction electrons also
can contribute to an isotropic boson �eld. We should
mention that the same universality classes as for GdZn
are observed also in magnetization measurements of fer-
romagnetic GdMg [11, 12]. On the other hand, for fcc
nickel isotropy is observed in zero �eld 61Ni NMR mea-
surements but, as expected, 1D dynamic symmetry in the
macroscopic magnetization (compare Fig. 2 and Fig. 6).
This shows that correct interpretation of the observed
universal exponents can be a complicated task.

Fig. 6. Macroscopic spontaneous magnetic moment of
nickel as a function of T 5/2 [31]. In the state of magnetic
saturation nickel exhibits, as MnF2 (see Fig. 5), the uni-
versal exponents of a magnet with 1D boson �eld and
half-integer (e�ective) spin (ε = 5/2 and β = 1/3).

Fig. 7. Normalized order parameter of antiferromag-
netic MnF2 re�ecting the typical behavior of a magnet
with one-dimensional boson �eld and half-integer spin:
the universal power function at T = 0 is T 5/2 and the
critical power function has exponent β = 1/3 [20, 30].

We now discuss the typical behavior of magnets
with one-dimensional boson �eld for all temperatures
(0 < T < TN) and with half-integer spin, beginning with
tetragonal MnF2 (Fig. 7) [15, 20]. The universality class



404 U. Köbler

at T = 0 is T 5/2 and the critical exponent β is to a very
good approximation β = 1/3 [30]. Figure 7 combines
neutron scattering data (circles) [20] and 19F NMR data
(dots) [30]. In order to avoid the rather severe extinc-
tion problems in single crystal experiments the neutron
scattering data have been obtained on powder material.
MnF2 unambiguously proves that the critical exponent of
the one-dimensional boson �eld is β = 1/3. As materials
with integer spin show, β = 1/3 applies to 1D magnets
with integer spin as well [13].

A further example of the two universality classes (ε =
5/2 and β = 1/3) is nickel in the state of ferromag-
netic saturation. As we have mentioned, in the state
of ferromagnetic saturation 1D dynamic symmetry can
be anticipated. By various reasons this expectation is
not always con�rmed. For the itinerant ferromagnet
nickel with cubic bcc lattice structure 1D dynamic sym-
metry is con�rmed in macroscopic magnetization mea-
surements [13, 31]. Comparison of Fig. 6 and Fig. 7 re-
veals identical exponents for ferromagnetically saturated
nickel and for antiferromagnetic MnF2. Spin structure
independence of the exponents again proves universality
of the �eld dynamics.

As a conclusion, in the state of ferromagnetic satura-
tion the itinerant metallic ferromagnet bcc nickel exhibits
1D dynamic symmetry as the insulating tetragonal anti-
ferromagnet MnF2 with half-integer spin of S = 5/2. It is
not self-evident but experimentally well con�rmed that
the itinerant ferromagnets Fe, Ni, and Co can be classi-
�ed by the same dynamic symmetry classes as magnets
with localized magnetic moments. According to a satura-
tion magnetic moment of 0.616 µB/Ni it is reasonable to
attribute an e�ective spin quantum number of Seff = 1/2
to nickel [13, 31]. We should, however, note that the low
temperature behavior of the macroscopic spontaneous
magnetization of nickel (not shown in Fig. 6) is more
complicated than reveals by Fig. 6 [13, 31]. For rea-
sons of completeness we should note that at about 120 K
crossover to low temperature T 3/2 function can be iden-
ti�ed in the data of [31]. T 3/2 universality class is consis-
tent with Seff = 1/2 but belongs to the 3D anisotropic bo-
son �eld. Crossover to a higher symmetry class at lower
temperatures can, at least qualitatively, be explained by
an increasing mean free path of the GSW bosons with
decreasing temperature. The bosons then can average
over larger regions of the sample. This, in principle,
can result into a higher dynamic symmetry class at low
temperatures.

As was demonstrated by Figs. 3�5, 8 (and by many
more not discussed examples) there is ample experimen-
tal evidence that in the isotropic magnets with half-
integer spin the critical behavior is of mean-�eld type.
The cubic ferromagnets EuS and EuO (Fig. 1, Fig. 9),
and other examples to follow, obviously do not conform
to this systematic. On the one hand, the anticipated low
temperature T 2 function of the isotropic magnets with
half-integer spin (S = 7/2) is con�rmed for EuS and EuO
but, on the other hand, the critical exponent β is close to

Fig. 8. Normalized ferromagnetic component of the
weak ferromagnet MnCO3 as a function of reduced
temperature squared [24]. Crossover from low tem-
perature T 2 function to critical power function with
mean �eld exponent of β = 1/2 is at TCO = 28 K.
The width of the critical range, ∆T = TN − TCO, is
∆T/TN = 0.14. The two exponents belong to isotropic
dynamic symmetry.

Fig. 9. Normalized zero �eld spontaneous magnetiza-
tion data of EuS obtained by neutron scattering [33] and
by 153Eu NMR [34] as a function of reduced tempera-
ture squared. Low temperature T 2 universality class
conforms to the expected isotropic dynamic symmetry.
Critical exponent of β ∼ 1/3 is indicative of a one-
dimensional boson �eld. The dimensionality crossover
from 3D to 1D boson �eld can be assumed to coincide
with the crossover at TCO = 12.2 K.

β = 1/3 instead of β = 1/2 [32]. In many investigations
using zero �eld methods such as neutron scattering [33]
and 153Eu NMR [34] the critical exponent of β ≈ 1/3
has been con�rmed for EuS and EuO. Since the expo-
nent β = 1/3 is well established for genuine 1D magnets
it can safely be concluded that in EuS and EuO the boson
�eld is 1D in the critical range but 3D below the critical
range. An indirect indication that the assumed dimen-
sionality crossover coincides with the common crossover
from T 2 function to critical power function (TC − T )1/3
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is the enormous large critical range ∆T = TC − TCO.
For EuS ∆T/TC = 0.26 and for EuO ∆T/TC = 0.36.
A normal value for the critical range is ∆T/Tc = 0.15.
1D dynamic symmetry in the critical range can be ex-
plained by a mean free path of the GSW bosons that
has become shorter than the linear dimension of the do-
mains. The domains then are decoupled and the bulk
material exhibits 1D dynamic symmetry of the isolated
domain. This situation applies to all temperatures in
cubic RbMnF3 [20].
In Fig. 1 macroscopic magnetization data of EuO (cir-

cles) [36] have been depicted in addition to the zero �eld
neutron scattering data (triangles) [33] and zero �eld
153Eu NMR data (squares) [35]. It can be seen that in
the critical range zero �eld neutron scattering data and
macroscopic magnetization data agree excellently. This
is no surprise since the boson �eld is 1D in the zero �eld
state and remains 1D in the state of magnetic saturation.
Nuclear magnetic resonance (NMR) is by far the most

accurate method for the evaluation of the temperature
dependence of the order parameter. Fit of T ε function
over all available NMR data in the temperature range
0.0216TC < T < 0.536TC [35] results in an exponent of
ε = 1.948±0.030 for EuO. In this temperature range the
order parameter varies between 0.999 < ν/ν0 < 0.862.
The mean deviations from T 2 �t are 0.001. As a con-
clusion, the Bloch atomistic (non-universal) T 3/2 func-
tion is not identi�ed using the most accurate method
of NMR. Instead, data are satisfactorily described by uni-
versal T 2 function.

Fig. 10. Normalized order parameter of YbFeO3 mea-
sured by 57Fe Mössbauer spectroscopy (dots) and by the
method of neutron scattering (circles) as a function of
reduced temperature squared [37]. Crossover from low
temperature T 2 function to critical power function with
β = 1/3 is at TCO = 440 K. The width of the critical
range, ∆T = TN − TCO, is ∆T/Tc = 0.30.

In order to demonstrate that the unusual combination
of the two universal power functions T 2 and (Tc−T )1/3 is
not restricted to EuS and EuO we add YbFeO3 (S = 5/2)
and bcc nickel (Seff = 1/2) as further candidates to

illustrate the dimensionality crossover from 1D dynamic
symmetry in the critical range to 3D dynamic symmetry
below the critical range (Fig. 2, Fig. 10) [37, 38]. Ex-
actly the same universal power functions as for YbFeO3,
EuS and EuO are observed in zero �eld 61Ni NMR mea-
surements (Fig. 2). Fit of the exponent ε to the 61NMR
frequencies in the temperature range 0.0075TC < T <
0.55TC results into exponent of ε = 1.994±0.023. In this
temperature range the normalized NMR frequencies (or-
der parameter) vary between 0.999 < ν/ν0 < 0.889.
The mean deviations from T 2 �t function are 0.0005.
Note the di�erent behavior in the spontaneous magne-

tization of nickel (Fig. 6). In other words, upon magnetic
saturation of nickel a dimensionality crossover from T 2

class in the zero �eld ground state to T 5/2 class in the
state of ferromagnetic saturation occurs. The critical be-
havior is identical under the two experimental conditions.

3. Conclusions

We now are pretty sure that the critical exponent β
of the one-dimensional boson �eld is β ≈ 1/3, indepen-
dent of spin quantum number. Additionally, β ≈ 1/3
is observed also for the isotropic magnets with integer
spin. Only for the isotropic magnets with half-integer
spin β = 1/2. The frequent occurrence of the exponent
of β = 1/3 has already been noticed in 1966 [39]. In or-
der to obtain a more accurate experimental average for
the critical exponents of the magnets with half-integer
spin and 1D boson �eld we now know that it is allowed
to include data of the cubic magnets RbMnF3, EuS and
EuO in addition to MnF2. This is important since the
critical exponents of these materials are among the best
known ones.
It is obvious that in MnF2 the boson �eld is one-

dimensional. Since spin and exchange interactions [16]
are three-dimensional and isotropic in MnF2 the dimen-
sionality of the boson �eld must somehow come from the
tetragonal lattice symmetry. In other words, spin dimen-
sionality and exchange dimensionality are unimportant
for the dimensionality of the �eld. As a consequence,
classi�cation of magnets according to spin and exchange
dimensionality is inappropriate. Table compiles experi-
mental data for the critical exponents β (order parame-
ter), γ (susceptibility) and ν (inverse correlation length)
for EuO [32, 33, 36], EuS [32, 33, 34], MnF2 [15], and
for RbMnF3 [40]. Within the typical error of ±0.02 the
exponents of all four listed compounds agree very well.
Because the exponents ε of the low temperature T ε

universality classes are rational numbers there is some
motivation to expect that the critical exponents also are
rational numbers. This idea is supported by the expo-
nents of Table. In fact, the exponent values averaged
over all four materials are close to the rational numbers
β = 1/3, γ = 4/3 and ν = 2/3. These idealized ra-
tional numbers obey the scaling relation 2β = 3ν − γ.
This is, however, a minimal condition only. Using the
scaling relation α + 2β + γ = 2 a critical exponent of
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TABLE

Mean experimental values of critical exponents of
magnets with one-dimensional boson �eld and half-
integer spin. Errors for all exponents are ±0.02.

β γ ν

EuO 0.36 1.32 0.68

EuS 0.34 1.28 0.70

MnF2 0.35 1.27 0.634

RbMnF3 0.32 1.366 0.70

Idealized 1/3 4/3 2/3

α = 0 results from the exponents of Table. This value is
in fair agreement with the averaged experimental value
of α ≈ 0.05± 0.01 [32]. We must, however, consider that
the heat capacity is an integral quantity. Possibly, non
magnetic contributions modify the value of the critical
exponent α. Furthermore, using the exponents of Table
the scaling relation γ = β(δ − 1) results into δ = 5. This
value is de�nitively larger than the mean experimental
value for EuO and EuS of δ = 4.34 ± 0.1 [32]. As a
conclusion scaling relations including the exponent δ of
the critical isotherm are violated. In other words, the
non intrinsic, �eld induced �critical� behavior does not
conform to conventional scaling relations. This appears
plausible since an external magnetic �eld acts not only
on the spin but can act additionally on the �eld bosons
if the bosons have magnetic moment. This is likely to
be the case according to the non-linear ∼ q1.5 dispersion
relation of the one-dimensional boson �eld [22]. Using
α = 0 the same value of δ = 5 results from scaling rela-
tion α+ β(δ + 1) = 2.
Comparison of the here proposed rational exponent

values with available �eld theoretical calculations [7] ap-
pears inappropriate because these calculations are based
on inadequate �eld concepts. At the time of these calcu-
lations the nature of the �eld and its action on the spin
system were not yet su�ciently explored to formulate a
realistic �eld theory of the critical dynamics. In particu-
lar no distinction is made between magnets with integer
and half-integer spin quantum number. As experiments
show, β = 1/2 for the magnets with isotropic boson �eld
and half-integer spin but β = 1/3 for the isotropic mag-
nets with integer spin. Development of reliable �eld the-
ories of magnetism remains a big challenge for the future.
The main conceptual drawback of the present �eld theo-
ries is that they retain the atomistic classi�cation of the
critical behavior in terms of dimensionality of the spin
and dimensionality of the exchange interactions. In other
words unimportance of the atomic degrees of freedom
for the �eld dynamics was not respected consequently.
As the example of MnF2 clearly shows classi�cation of
the critical dynamics must be exclusively according to the
symmetry of the GSW boson �eld. In MnF2 the boson
�eld is one-dimensional but spin and magnon dispersions
are isotropic. It is due to the 1D boson �eld that only
the z-component of the Mn2+ spin orders [15]. In other
words, the �eld executes the phase transition. Ordering

of only the z-component of the Mn2+ spin does not mean
that MnF2 is an Ising system. The perfect paramagnetic
isotropy [41], and the observed universality clearly dis-
prove Ising behavior. The ordered spin component in
MnF2 is pinned to the vector of the boson �eld. This
situation applies to all domains. Within any domain the
boson �eld is that of a laser.
Most surprising is that the one-dimensional boson �eld

of the individual domain can de�ne the dimensionality
of cubic bulk magnets [20]. When the boson �elds of
the di�erently oriented domains are not in dense contact
with each other they do not interact, and the bulk sample
exhibits the dynamic behavior of the isolated domains
and is one-dimensional. In one-dimensional MnF2 the
whole bulk sample is one single domain. As a conclusion,
the axial �elds of the domains are the components of the
global �eld. Isotropy of the global �eld results by some
vector coupling of the one-dimensional �eld components.
Since the �eld is the relevant excitation spectrum fu-

ture �eld theories of magnetism need to consider the en-
ergy degrees of freedom of the �eld exclusively. Ther-
mal decrease of the order parameter is given by the heat
capacity of the �eld. Curiously, the spin system � al-
though the origin of magnetism � is not responsible for
its own dynamics. This most remarkable conclusion of
RG theory provokes a philosophical parable. Because
the spin system has transferred all its thermal energy to
the �eld (by giving �eld quanta into the �eld) it has lost
its autonomy. This reminds on processes in the monetary
marked. When everybody gives his money to the bank,
the bank controls all money and the individual savers
have no longer in�uence on what their money is doing
but have to accept what the monetary marked prescribes.
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