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We investigate several issues related to the electronic states in the ligand orbital of a given transition-metal salt
as, for example, a K2CuCl4·2H2O-type compound. In fact, to get our calculation, we start from an expression for the
electronic density of states in a compound of the above type. In addition, various aspects related to superexchange
interaction in both the paramagnetic and ferromagnetic cases are discussed and the electronic conduction process
in the ligand orbital is studied.
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1. Introduction

As signi�cant salts in the context of chemical physics,
transition-metal salts (consider, for instance, K2CuCl4 ·
2H2O-type crystals) are interesting compounds from the
point of view of magnetism in solids. In particular, the
importance of these salts is manifested when one exam-
ines superexchange interaction. As a matter of fact, the
superexchange interaction of the involved magnetic ions
is strongly linked to the spin transfer to a non-magnetic
ligand so a superexchange path is created. Considering
the compound K2CuCl4 · 2H2O, we should remark the
relevance of the superexchange path between the near-
est neighbour copper ions. In this context, the p orbital
of oxygen has an 1s unpaired electron of the hydrogen
atom. All the p orbitals of Cl and O, assuming that they
are a ligand, are �lled with two mutually opposite spins.
By regarding that these orbitals are equivalent and that
the ligand between the Cu2+ ions is formed by these two
anions, then one has a ligand with all p �lled orbitals:

Cu2+1 → Cl→ O→ Cu2+2 (path 1)

↓
K2CuCl4 · 2H2O system −→
superexchange energy←→ spin density←→ DOS

↑
Cu1+1 → Cl→ O→ Cu3+2 (path 2). (D1)

The Cu2+ magnetic ion of the above compound is sur-
rounded by a distorted octahedron with two O2− and
four Cl− ions that are bonded to the hydrogen atoms.
One would notice that, apart from 3dx2−y2 (which con-
tains one unpaired electron), all 3d shells of the Cu2+ ion
are �lled. On the other hand, we wish to note that path 1
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in the diagram D1 has two electrons of mutually opposite
spins in the same p orbital of the ligand, joining Cu2+1
(dx2−y2) and Cu2+2 (dx2−y2). This will be the key point
in our formulation (Sect. 2) relative to density of states
and electronic conduction in the ligand orbital. As a
matter of fact, we will regard a two-electron approach to
certainly discover new physics in transition-metal salts.
Unfortunately, investigating theoretically the magnetic

properties of the compounds in question has received
very little attention so only a few of theoretical papers
on the subject have been published (see, for example,
Refs. [1, 2]). The above properties can be investigated
by starting from the concept of electronic density of
states [1�3]. In fact, the theoretical-analytical approach
presented here starts from the aforementioned concept.
On the experimental side, also little work has been done.
On the other hand, we wish to remark the relevance of
the concept of superexchange interaction in magnetism
of solids [4, 5] so important research e�orts on the above
subject are needed.
In transition-metal salts, on the one hand, the spin

transfer to a non-magnetic ligand is directly related to
regard the corresponding free-spin density and, on the
other hand, we have said before that there is a clear
dependence between the spin transfer and the superex-
change interaction of the involved magnetic ions. Indeed,
the free-spin density may be viewed as a key physical
quantity with some interesting implications. In fact, the
electronic density of states in the ligand orbital relative to
a transition-metal salt relies (weakly) upon the free-spin
density. Of course, this dependence will be expressed in
the following by means of a signi�cant relationship [1�3]
from which determination of the total number of elec-
tronic states will be carried out. As a result, the to-
tal number of electronic states in the ligand orbital of
a transition-metal salt does not (approximately) depend
on the free-spin density. The main aspects related to our
calculation will be discussed as well as some aspects of
the superexchange interaction. On the other hand, we
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shall study the electronic conduction process in the lig-
and orbital. We want to notice that, surprisingly, nor
experimental neither theoretical work on the subject has
been published. Consequently, it is clear that our ap-
proach may be regarded as a substantial improvement of
the state of the art. The paper is organized as follows:
Sect. 2 is devoted to the electronic density of states in
the ligand orbital, superexchange interaction in the para-
magnetic case, and electrical conduction in the ligand
orbital; Sect. 3 deals with superexchange interaction in
the ferromagnetic case; Sect. 4 is a discussion of results;
concluding remarks are given in Sect. 5.

2. Theoretical formulation:

the paramagnetic case

Let us consider a transition-metal salt as, for instance,
the compound mentioned in Sect. 1. As in the aforemen-
tioned example, by considering d (magnetic) and p (lig-
and, non-magnetic) orbitals, the corresponding total den-
sity of electronic states in the non-magnetic orbital as a
function of the electronic energy, reads [1�3]:

g (E) ≈ 2kV {δ (E − Ep) + ρs [δ (E − Ed1)

+δ (E − Ed2)]} , (1)

where k is a non-negative real constant, V is the vol-
ume of the ligand (non-magnetic) orbital which, as we
have said before, is assumed to be the p orbital, δ stands
for (truncated to unity) Dirac delta function, d1 and d2
are the magnetic orbitals, and ρs stands for free-spin
density. This density depends on temperature but, for
convenience, this dependence will be not considered ex-
plicitly here. On the other hand, we wish to remark
that formula (1) is so accurate from the mathematical-
physics point of view and is also consistent with previ-
ous published work either experimental or theoretical [1�
9]. In fact, expression (1) has been tested satisfacto-
rily. In other words, the formula in question is a man-
ifestly sound starting point to elaborate the following
formulation.

Taking into account that ρs � 1, by integrating both
sides of (1) over a �nite energy interval denoted by ε, we
get the total number of electronic states as follows:

N ≈ 2kV. (2)

From expression (2), it follows clearly that, in a �rst ap-
proximation, the total number of electronic states does
not depend upon the free-spin density.

By assuming realistically that Ed1 ≈ Ed2(= Ed) (see,
for instance, Ref. [1]), then from relationship (1) one has
that g (Ep) ≈ 2kV as well as

g (Ed) ≈ 4kV ρs. (3)

We note that 0 < Ep < Ed ≤ ε. On the other hand, from
relation (2) it follows that k ≈ N/(2V ) which, replaced
into (1) with the approximation namely Ed1 ≈ Ed2(=
Ed) and taking into account that ρs � 1 (notice that
the Dirac delta function used here is truncated to unity),
then gives

g (E) ≈ Nδ (E − Ep) , (4)

which, of course, may be obtained by neglecting ρs in
formula (1) and integrating directly both sides of (1) for
0 ≤ E ≤ ε.

Eliminating now ρs from expression (3) and the follow-
ing relationship obtained from second-order perturbation
theory [1]:

JW ≈ 4 (Ed − Ep)
2
ρ2s, (5)

where J denotes superexchange interaction energy and
W is the di�erence between the ground-state and excited-
state energies of the system, then one �nds

g (Ed) ≈
2kV
√
JW

Ed − Ep
. (6)

On the other side, from expression (4) it follows that
g (Ed) ≈ 0 which is consistent with formula (6) because,
by relationship (5), J is signi�cantly small due to the fact
that ρ2s ≪ 1. At this point, let us remember that ρs � 1
(ρs ≈ 0.003 is a typical value) so ρ2s ≪ 1. De�nitively,
one may say that g (Ed) is extremely small.

Now we wish to discuss some issues concerning the
p orbital. First, notice that, by virtue of the covalent
bonding involved in our transition-metal salt, the d or-
bital becomes the corresponding antibonding molecular
orbital whereas the p orbital becomes the bonding mole-
cular orbital:

covalency : ψd
antibonding−−−−−−−−→ ϕ∗

free−spin transfer ↓ (D2)

covalency : ψp −−−−−→
bonding

ϕ.

Before and after bonding, the d orbital is singly occu-
pied while the p orbital is doubly occupied so it con-
tains two electrons of mutually opposite spins, that is,
the quantum state of these two electrons is the same
(consider the exclusion principle; see Sect. 1). There-
fore, one has that N = 1 which, inserted into (4), yields
g (E) ≈ δ (E − Ep). From the fact that N = 1 with for-
mulae (2) and (6), it follows:

g (Ed) ≈
√
JW

Ed − Ep
. (7)

Next we will consider the paramagnetic phase of a
transition-metal salt. On the other hand, note that the
spatial electron density in the ligand orbital is 2/V so the
Fermi level of the ligand orbital at zero absolute temper-
ature reads

EF =
~2

2m

(
6π2

V

)2/3

. (8)

Equating (8) with mv2F (notice that the involved mass
is 2m), where vF is the magnitude of the Fermi velocity
at zero absolute temperature, then one gets

vF =
~√
2m

(
6π2

V

)1/3

, (9)

which gives rise to a current density of magnitude
j = 2evF/V , that is
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j =

√
2e~
m

(
6π2

V 4

)1/3

, (10)

where e is the absolute value of the electron charge.
One has that g (EF) ≈ αj where α is a non-negative

constant (see, for instance, Refs. [10�13]). From this fact
together with that N = 1, with relationship (4) when the
electronic conduction occurs, i.e., EF = EP , and with
Eq. (10) in atomic units, then it follows:

α ≈ 1√
2

(
V 4

6π2

)1/3

. (11)

We emphasize that the electron conduction takes place in
the ligand orbital when the energy of this orbital equals
the corresponding Fermi level. On the other hand, since
Ed > Ep, from Eq. (8) it follows in atomic units:

Ed >
1

2

(
6π2

V

)2/3

. (12)

Inequality (12) provides an inaccessible lower bound for
the energy of the d orbital.
This bound depends signi�cantly upon the volume of

the ligand orbital.

3. The ferromagnetic case

As a, say, typical example, the K2CuCl4 · 2H2O-type
solids can exhibit ferromagnetic behaviour; a solid of this
type can behave as insulating Heisenberg ferromagnet.
So, in the following, we shall tackle the above crystals in
the ferromagnetic case. As a matter of fact, we will fo-
cus on the insulating Heisenberg ferromagnet which, for
obvious reasons, will not be treated from the standpoint
of electron conduction. In this framework, the electron
energy in the ligand orbital reads E = −Js1s2 where
s1 = s2 = 1/2 are the spin values relative to the two
electrons which occupy the above orbital. From the con-
junction of this fact with formula (5), it follows:

E ≈ − (Ed − Ep)
2
ρ2s

W
. (13)

Note that t = (Ed − Ep) ρs is the corresponding hopping
matrix element so, by relation (13), one has brie�y that
E ≈ −t2/W .
Moreover, we have (see, for instance, Ref. [1]) the fol-

lowing expression, which holds for the paramagnetic case

J =
〈ψd|Ĥ|〉ψp〉

2

Ed − Ep
, (14)

where Ĥ is the interaction Hamiltonian operator of per-
turbation. In antibonding, the p orbital of the ligand is
viewed as a perturbation to the d orbital of the copper
ion while in bonding, the d orbital is a perturbation of
the p orbital.
Concerning, in particular, the K2CuCl4 ·2H2O system,

the d orbital of the Cu2+ ion overlaps with the p orbital
of the ligand (the main bond between a copper ion and
the ligand is created with the d orbital of the Cu2+ ion).
Then, the aforementioned overlapping involves the ma-
trix element namely γdp = 〈ψd| Ĥ |〉ψ〉. Consequently,

from formula (5) with expression (14), one gets(γdp
t

)2

≈ 2

(
Ed − Ep

W

)
. (15)

In practice, we have that Ed −Ep ≈ 1 eV and W ≈ 2 eV
(see, for example, Ref. [14]) so, from relation (15) it fol-
lows that γdp ≈ t. Of course, relation (15) holds in the
paramagnetic case. After formula (13), we have written
E ≈ −t2/W so, in practice, we have that E ≈ −γ2dp/W .

4. Discussion

For the �rst time, we have proposed a theoretical
model relative to the electronic density of states in the lig-
and orbital of transition-metal salts, the total number of
these states, superexchange interaction, and electron con-
ductance by considering the paramagnetic state. In par-
ticular, the total electronic density of states (in the ligand
orbital) at the Fermi level (at zero absolute temperature)
has been determined. Of course, the Sommerfeld expan-
sion should be employed to extrapolate the Fermi level
at any temperature. The current density in the ligand
orbital has been also determined so the main aspects of
the electronic conduction process in the ligand orbital
have been discussed. The ferromagnetic case has been
also treated. In fact, we have concentrated on the in-
sulating Heisenberg ferromagnet (see relations (13), (14)
and (15)), which, to date, has not still been tackled the-
oretically in relation to transition-metal salts.
On the other hand, we want to remark the relevance of

our study within the framework of the concept of cova-
lent bond related to magnetism in solids (see Sect. 2 and
Sect. 3, expression (14)). In this context, by virtue of
perturbation theory, we can write (see diagram D2 and,
for instance, Ref. [1]):

ϕ = ψp + γ1ψd, (16)

ϕ∗ = ψd − γ2ψp, (17)

where ϕ and ϕ∗ denote bonding and antibonding mole-
cular orbitals respectively whereas γ1 and γ2 are coe�-
cients to be determined by considering

ϕ∗ = ψ
(0)
d + ψ

(n)
d = ψd +

γdpψp

Ed − Ep
, (18)

ϕ = ψ(0)
p + ψ(n)

p = ψp −
γdpψd

Ed − Ep
, (19)

where ψ
(n)
d and ψ

(n)
p are the respective n-th perturbed

terms.
Equating, on the one hand, formulae (16) and (19) and,

on the other hand, (17) and (18), then it follows:

γ1 = γ2 = − γdp
Ed − Ep

. (20)

We have said that, in practice (see, for instance,
Ref. [14]), one has γdp ≈ t so expression (20) can be
rewritten as γ1 = γ2 ≈ −t/ (Ed − Ep).
Our formulation should be certainly useful to study the

magnetic properties of amorphous salts of the above type.
In addition, optical absorption (particularly far-infrared
absorption) in these compounds could be calculated [2].
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Within this context, by using a formula involving g (E)
given by expression (1), the coe�cient of optical absorp-
tion can be computed [2].

5. Concluding remarks

Formulae (8) to (12) are the core to do future stud-
ies on electron transport through certain nanostructures.
From the previous considerations upon electron conduc-
tion through transition-metal salts in the paramagnetic
state, one may establish a two-electron model suitable
to investigate crucial problems relative to electron trans-
port in, for example, quantum dots. At this point, we
recall the atom-like nature of a quantum dot. This
nature resembles the physics of the ligand orbital in a
metal-transition salt. Therefore, key aspects of the above
physics should be extrapolated to study electron trans-
port in quantum dots. These studies would be analytical
(in the spirit of, for instance, Refs. [15�19]) in order to
elaborate new well-grounded theories.
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