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We discuss the in�uence of an external magnetic �eld on the exciton energy and the exciton oscillator strength
in the shallow quantum wells. We include into consideration the Coulomb attraction between electron and hole,
which is rarely taken into account. We self-consistently solve the Schrödinger equation to compare the obtained
results with the experimental values.
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1. Introduction

The excitons in quantum wells (QWs) form nowadays
the basic system of many optoelectronic devices. Our
work was triggered by the recent interest in the exciton�
polariton physics, where excitons in quantum wells are
strongly coupled to semiconductor microcavity mode [1].
After pioneering work showing the non-linear e�ect in
this system [2], researchers become interested in the ap-
plication of external electric and magnetic �elds that
modi�es the excitonic counterpart of the polariton quasi-
particle. In this paper we show the in�uence of exter-
nal magnetic �eld on the exciton energy and the exci-
ton oscillator strength, that is a measure of the exciton�
photon coupling strength. We are especially interested
in excitons in shallow QW reported in the recent publi-
cations [3, 4]. We directly compare our theoretical model
with the experimental results reported in Ref. [5].

2. Exciton energy and oscillator strength

Coulomb attraction between the electron and hole is
responsible for arising an exciton in semiconductors. In
the case of QW, the Coulomb force also in�uences a po-
tential of the QW which localizes particles making the
exciton. This type of a QW potential change is rarely
taken into account because it is believed to be small in
the case of a deep QW. However, in the case consid-
ered in this paper, when the material of the quantum
well contains only a small fraction of indium, the QW is
shallow, and the e�ect mentioned above should be taken
into account. One of the way to deal with it is to solve
the exciton problem self-consistently. Here, we follow the
method proposed in Ref. [5] and extend it to include the
e�ect of an external magnetic �eld.
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Let us assume that z axis of the Cartesian coordinates
is along the growth direction of heterostructure and sup-
pose that the magnetic �eldB is normal to the QW plane.
Carrying out a standard procedure of separating the ex-
citon center of mass and electron�hole relative motion in
the well plane, the heavy hole exciton Hamiltonian can
be given in the form

ĤΨ = (Ĥe + Ĥh + Ĥρ + Vc)Ψ = EΨ , (1)

where

Ĥe = − ~2

2me
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Vc = − 1

4πε0ε

e2√
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. (5)

ze, zh are electron and hole z-coordinate (along the
growth direction), ρ is the in-plane (x, y-plane) electron�
hole pair separation, me,mh are the electron and hole
masses, µ � the reduced mass of the electron�hole pair,
ε0 is the vacuum permittivity, e is the elementary charge,
ε is the dielectric constant, L =

√
~/(eB) is the mag-

netic length, ωec , ω
h
e are the electron and hole cyclotron

frequencies, Ue(ze), Uh(zh) are the well potentials for an
electron and a hole, le, lh electron and hole numbers Lan-
dau levels. We assume the exciton wave function to be

Ψ(ze, zh, ρ) = φe(ze)φh(zh)ψρ(ρ). (6)

To solve Eq. (1) self-consistently we have to �nd a solu-
tion to the following system of integro-di�erential equa-
tions [6]:

(Ĥe + V̄e)φe(ze) = Eeφe(ze), (7)

(Ĥh + V̄h)φh(zh) = Ehφh(zh), (8)

(Ĥρ + V̄ρ)ψρ(ρ) = Exψρ(ρ), (9)

with e�ective potentials
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V̄e(ze) =

∫∫
ψ?ρ(ρ)φ?h(zh)Vcψρ(ρ)φh(zh)dzhdρ, (10)

V̄h(zh) =

∫∫
ψ?ρ(ρ)φ?e(ze)Vcψρ(ρ)φe(ze)dzedρ, (11)

V̄ρ(ρ) =

∫∫
φ?e(ze)φ

?
h(zh)Vcφe(ze)φh(zh)dzedzh, (12)

and with total energy E is given by

E = Ee + Eh + Ex −
∫
φ?e(ze)V̄eφe(ze)dze

−
∫
φ?h(zh)V̄hφh(zh)dzh. (13)

The system (7)�(9) is solved by the following iteration
procedure. First, we solve Eqs. (7) and (8) by setting
V̄e(ze) = V̄h(zh) = 0. The obtained solutions φe(ze) and
φh(zh) are used to calculate V̄ρ(ρ) by using (12). This
in turn enables us to solve Eq. (9). The obtained func-
tion ψρ(ρ) is then substituted to (10) and (11) to get new
approximations of the potentials V̄e(ze), V̄h(zh). The pro-
cedure is continued until the potentials (10)�(12) become
consistent with each other∫

φ?e(ze)V̄eφe(ze)dze ≈
∫
φ?h(zh)V̄hφh(zh)dzh ≈∫

ψ?ρ(ρ)V̄rψρ(ρ)dρ. (14)

GaAs GaAsIn0.04Ga0.96As

8 nm

Eg(0)
�Ee

�Eh

Eg(0.04)

Fig. 1. The quantum well.

In order to solve the problem de�ned above, we have
to estimate QW potentials Ue(ze), Uh(zh) for an elec-
tron and a hole. The In0.04Ga0.96As quantum well of
the width of 8 nm (see Fig. 1) is supposed to be in be-
tween two GaAs barriers. Let us estimate barrier heights
of con�ning potentials for a heavy hole and an electron.
Typically, they are determined by a di�erence in band
gaps shared between the conduction and valence bands
according to a factor Q which is the ratio of the con-
duction to valence band o�sets ∆Ec:∆Ev. In the case of
the quantum well under consideration, there is a lattice
mismatch between materials of the well and the barriers.
The lattice constant of In0.04Ga0.96As is larger than that
of GaAs which causes a compressive strain of the QW,
which in its turn introduces an additional contribution
to the con�ning potential. The strain tensor is

ε =

 εxx 0 0

0 εyy 0

0 0 εzz

 , (15)

where

εxx = εyy = δ, εzz = −2δ
c12
c11

, δ =
ax − a0
ax

, (16)

x is indium atomic content, ax � an x-dependent lattice
constant of InxGa1−xAs, and c12, c11 are the elastic sti�-
ness constants. The energy shifts due to the strain for
the conduction and heavy hole valence band edges are

∆Estrain
c = ac(εxx + εyy + εzz), (17)

∆Estrain
v = av(εxx + εyy + εzz)− bv(εxx − εzz), (18)

where ac, av, bv are deformation potentials for the heavy
hole valence and conduction bands, respectively. An x-
dependence of the band gap in the unstrained case is [7]:

Eg(x) = Eg(0)− 1.5837x+ 0.475x2. (19)

The total shift of the band is

∆E = 1.5837x− 0.475x2 −∆Estrain
v −∆Estrain

c . (20)

To account for temperature changes in the lattice con-
stant and band gaps we use the following formulae:

a(T ) = a(300 K) + (T − 300 K)aT , (21)

Eg(T ) = Eg(0)− αT 2

T + β
, (22)

α and β are the material constants. To obtain the pa-
rameters of InxGa1−xAs for the indium fraction x = 0.04,
we use a linear interpolation of parameters of GaAs and
InAs given in Table. Assuming Q=60:40 [8], we get ∆Ehh
= 18 meV and ∆Ee = ∆Eg − ∆Ehh = 27 meV. These
values determine the con�ning potentials Ue(ze), Uh(zh).

TABLEMaterial parameters used in calculations.

Parameter GaAs InAs
ac [eV] [9] �9.36 �6.66
av [eV] [9] �1.21 �1.00
bv [eV] [9] �2.0 �1.8
c11 [GPa] 122.1 83.29
c12 [GPa] 56.6 45.26
mc [me] [10] 0.067 0.026
mv [me] [10] 0.5 0.041

Eg [eV], T = 0 K [10] 1.519 0.417
a [Å] T = 300 K [10] 5.65325 6.0583

ε [1] [7] 12.93 15.15
α [meV/K] [10] 540.5 276.0
β [K] [10] 204 93

aT [Å/K] [10] 3.88× 10−5 2.74× 10−5

The dependence of the calculated exciton energy on
the magnetic �eld is presented in Fig. 2.

It is worth mentioning that we present here results of
the calculations for le and lh which are equal to zero.
We also calculate an exciton oscillator strength which is
a measure of the probability of an electric dipole optical
transitions. It is given by [11]:
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Fig. 2. The exciton energy.

fosc ∝
∣∣∣∣∫∫ φe(ze)φh(zh)dzedzh

∣∣∣∣2 |ψρ(ρ = 0)|2. (23)

The dependence of the calculated oscillator strength on
the magnetic �eld is presented in Fig. 3.

Fig. 3. The normalized oscillator strength..

3. Conclusions

Presented results display a sensible agreement between
theory and experiment. At low values of the magnetic
�eld when the Landau quantization energy is comparable
to the exciton binding energy, we observe a little growth
of the normalized oscillator strength. When the magnetic
�eld becomes stronger and the contribution to the exci-
ton energy due to the Landau quantization begins to be
signi�cant the oscillator strength grows almost linearly.
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