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An Investigation of the The dynamic Young Moduli

of Twisted Fibres

A. Wasilewski* and T. Wi¦cek
Rzeszów University of Technology, al. Powstanców Warszawy 12, 35-329 Rzeszów, Poland

This paper describes a modi�ed laser system to measure the dynamic Young modulus and logarithmic decre-
ment of damping for twisted �bers. A modi�ed impulse mechanical spectrometer was designed and built by the
authors. The e�ect of twisting on the values of the dynamic Young modulus and logarithmic decrement of damping
was studied. The dynamic Young modulus and logarithmic decrement of damping were investigated for long PET
�bers with a 200 µm diameter. This experimental method does not require calibration because it contains standard
length which is the wavelength of the laser beam.
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1. Introduction

Composite materials are widely used in industry. De-
signing composite materials requires knowledge of the
mechanical properties of single �bers. The dynamic
Young modulus and logarithmic decrement of damp-
ing are just two of many mechanical parameters of the
�ber [1, 2] and present the determination of the dynamic
Young modulus for a non-twisted �ber using an impulse
mechanical spectrometer (IMS). One-dimensional me-
chanical components are often subjected to tension and
torsion. Theoretical results published in paper [3] were
used to obtain analytical expressions for the maximum
contact stresses induced in cables subjected to tension
and twisting. On a small scale, the response of hollow and
�lled carbon nanotubes subjected to tension and twisting
is investigated using classical molecular dynamic simula-
tions [4]. Paper [5] presents the plastic deformation of
pure copper under tension and twisting conditions. A
�ber composite may be twisted or non-twisted. To this
end, research was conducted into how the dynamic Young
modulus and logarithmic decrement of damping change
for a twisted �ber,

2. The dynamic Young modulus

The dynamic modulus is the ratio of stress to strain
under vibratory conditions. In purely elastic materials
stress and strain occur in phase, so that the response of
one occurs simultaneously with the other. In purely vis-
cous materials there is a phase di�erence between stress
and strain, with strain lagging stress by 90◦ (π/2 ra-
dians). This is known as phase lag. The behavior of
viscoelastic materials lies between that of purely viscous
and purely elastic materials, and exhibits some phase lag.
Stress and strain in a viscoelastic material can be repre-
sented using the following expressions [6, 7]:
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stress: σ = σ0 sin(ωt), (1)

strain:ε = ε0 sin(ωt− ϕ), (2)

where ω is the frequency of strain oscillation, t is the
time, ϕ is phase lag between stress and strain.
In viscoelastic solids the tensile storage modulus mea-

sures the stored energy (elastic component) while the loss
modulus measures the energy dissipated as heat (viscous
component). The tensile storage and loss moduli are de-
�ned as follows:

storage: E′ =
σ0
ε0

cos(ϕ), (3)

loss: E′′ =
σ0
ε0

sin(ϕ), (4)

The modulus E∗ can be expressed using complex nota-
tion as follows:

E∗ = E′ + iE′′ (5)

where i is the imaginary unit.

3. Experimental setup

A method to determine the dynamic elastic modulus
for a single twisted �ber is presented below. This is a
modi�ed impulse mechanical spectrometer [1, 2]. The
method, based on a laser di�ractographic technique [8�
11], provides dynamic elastic modulus measurements.
The apparatus, specially designed to measure the dy-
namic elastic modulus for a �ber (Fig. 1), consists of
a mechanical setup and a di�raction measurement sys-
tem using a Ne�He laser and detector. The �ber sample
is �xed in a holder (1) at one end and a weight is at-
tached to the other through a series of elements (2, 4 and
5). The dynamic elastic modulus is determined using the
�ber longitudinal vibration of elastic deformation. The
�ber under test, loaded with an additional weight (ele-
ments 2, 4, 5), can be made to oscillate by subjecting it
to an impulse force such as an impact to the frame (2)
from a falling steel ball. The initial load applied to the
�ber was not greater than 0.5 cN/tex. As the bearing
movable rod (4) vibrates it changes the width of the slit
while the laser beam passing through the slit generates
a di�raction pattern. The setup for dropping the metal
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ball consists of an electromagnet and a glass tube (10).
A metal ball is placed at the top of the glass tube and
held in place by the electromagnet when the current is
switched on. When the current is switched o� the ball
(9) travels along the tube and drops onto the connecting
frame (2) in such a way so as not to interfere with the
laser beam (8).
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Fig. 1. Schematic of the impulse mechanical spectro-
meter: 1 � �ber, 2 � connecting frame, 3 � air bear-
ing, 4 � bearing movable rod, 5 � movable edges, 6 �
�xed edges, 7 � support table with adjustable position,
8 � laser beam, 9 � small metal ball, 10 � set up for
dropping the metal ball, 11 � holder, 12 � compressed
air inlet, 13 � anti-rotation air�ow.

An experimental technique can be used to analyze a
�ber longitudinal vibrations. In order to investigate this
purely longitudinal vibration, any transverse vibrations
in the mechanical spectrometer must be e�ectively elim-
inated. For this reason the impulse mechanical spectro-
meter is constructed with an air and frictionless bearing,
which only allows the �ber to vibrate vertically. The air
bearing (9) should be frictionless in the desired direction.
This is possible when an air bag is placed between the
moving surfaces. During the experiment the slit a�ects
the di�raction image, speci�cally the light intensity in
the zero fringe, where detector D converts the optical
signal into an electrical one. This is then ampli�ed, digi-
tized using a 12-bit A/D converter, and processed using
standard o�-the-shelf software (Fig. 2).
The time-domain spectrum is analyzed using mathe-

matical functions of the form g(t) [12] with parameters:
A, β, ω, ϕ,

2.0 2.1 2.2 2.3 2.4 2.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4
digital recording

a
m

p
lit

u
d
e

[V
]

t [s]

0 1 2 3 4 5

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

a
m

p
lit

u
d
e

[V
]

t [s]

a)

b)

t1 t2 t3

Fig. 2. Amplitude of vibration versus time, a) total
spectrum, b) expanded view of a selected portion of
trace.

g(t) = Ae−βt sin(ωt+ ϕ), (6)

where A is the amplitude, β is the damping coe�cient,
ω is the resonant frequency, ϕ is the phase, t is time.
Initial values for the parameters were determined graph-
ically. By placing dozens of periods of mechanical loss
spectra and a curve-�tting function on one chart we can
adjust parameters (A, β, ω, ϕ), until the two traces are
superimposed. By providing initial values for the pa-
rameters the software can generate the exact ones. The
quality of this �t was analyzed graphically by comparing
on one graph the mechanical loss spectra. In addition,
the least squares method was also used for veri�cation.
The resultant parameters β, ω, allow the Young modulus
E, and dimensionless logarithmic decrement of damping
(δ) to be calculated. In the calculation the mass of the
�ber is neglected because it is insigni�cant compared to
the mass of the load.

σ =
F

S
ε =

∆L

L
k =

F

∆L
, (7)
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ω2
0 =

k

m
ω2 = ω2

0 − β2, (8)

where σ is stress, F is force, S is cross-sectional area
of the �ber (S = πd2n/4), ε is relative elongation, L is
length of the sample, k is coe�cient of elasticity, m is
mass of the load. The dynamic Young modulus EIMS

and logarithmic decrement of damping δ were calculated
from the following dependences [13]:

EIMS =
σ

ε
=

F · L
S · ∆L

= m
4L

πd2n
(ω2 + β2), (9)

δ =
2πβ

ω
. (10)

4. Results

A PET �ber was mounted using an adhesive. Its length
was 168 mm and it had a diameter of 200 µm. The �ber
thickness was speci�ed by the manufacturer (Rhodia).
The �ber was loaded with a static mass of 92.95 g. A
metal ball of mass 0.9 g falling from a distance of 10 cm
was used to initiate the vibrations. The time depen-
dent signal from the photodetector is shown in Fig. 2.
The vibration starts at time t1, when the falling ball hits
the frame. The initial part of the response, from t1 to
t2 is ignored because the amplitude is too great to be
transferred linearly by the electronics. A damped har-
monic motion can be clearly observed which is in agree-
ment with Eq. (6). A set of parameters (A, β, ω, ϕ)
was obtained using software from Microcal Origin. The
software calculated the angular frequency of vibration as
ω = 146.33 rad s−1 and the decay rate as β = 0.660 s−1

for a non-twisted �ber. The dynamic Young modulus
was estimated as 1.064 × 1010 Pa using Eq. (9).

Fig. 3. The dynamic Young modulus versus twisted
�bers..

Fig. 4. Logarithmic decrement of damping versus
twisted �bers.

5. Conclusions

On the basis of the obtained results we can conclude
the following:

1. Using our laser system, we can determine the
Young modulus without the need for calibration.
This is because the wavelength used in our math-
ematical formulae is a standard measurement unit
of length.

2. A parameter set consisting of the static and the
dynamic Young moduli for longitudinal vibrations
has an application in the materials engineering in-
dustry.

3. The extension of the �ber is in the elastic region.

4. The non-contact measurement of the slit width is
performed using a di�ractometer.

5. The Young modulus decreases with increasing �ber
twist.
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