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We introduce a model for a multiband topological superconductor with two orbitals per lattice site, in two
spatial dimensions. Concentrating on the Andreev re�ection problem, the appropriate wave function matching
conditions for an interface with a normal single-band metal were previously derived in the framework of a quantum
waveguide theory. This theory retrieves the correct number of Majorana fermion states as predicted by the topo-
logical index. We obtain the di�erential conductance as a function of bias voltage, which displays the contribution
of the Majorana fermions. Interface disorder is also considered. By varying band structure parameters, topological
transitions can be induced, whereby the number of the Majorana modes varies. We calculate the e�ect of such
transitions on the di�erential conductance.
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1. Introduction

Recent interest in non-trivial topological properties of
insulators [1] and superconductors [2, 3] has spurred in-
tensive research on band models displaying non-trivial
topology [4].
We introduce below a model for a superconductor

which has two orbitals per lattice site but no spin�
orbit coupling and study the Andreev problem for a nor-
mal metal/superconductor boundary (N/S). Assuming
the normal metal to be single band, the previously es-
tablished quantum waveguide theory (QWT) [5, 6] for
the wave function matching conditions at the interface
is used. While the Blonder�Tinkham�Klapwijk (BTK)
theory [7] predicts a zero energy Andreev bound state
(ABS), which is a Majorana fermion (MF) in this case,
for each electron pocket, we show that QWT accounts for
the correct number of MF's expected from the topologi-
cal index. The purpose of this work is therefore twofold:
(i) as we shall see below, the ABS predicted by QWT
correctly reconciles the Andreev problem with the topo-
logical index; (ii) we wish to see the interference e�ects on
the di�erential conductance, as the incident electrons go
from a single band metal to a multiband superconductor
(MBS), as described by QWT theory.

2. Model Hamiltonian

We now construct a model for a topological MBS, with
two orbitals per lattice site (pseudo-spin) of a square lat-
tice in addition to the spin degree of freedom.
We write kinetic energy for ↑-spin electrons as h(k)·τ+

h0(k)τ0 where the Pauli matrices τi=1,2,3 act on orbital
space (pseudo-spin) and τ0 denotes the identity matrix
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hx = sin ky, hy = − sin kx,

hz = 2t1 (cos kx + cos ky) + 4t2 cos kx cos ky,

h0 = −µ− t1 (cos kx + cos ky) . (1)
No spin�orbit coupling exists. We assume pairing with
spin-↓ electrons, whose kinetic energy is related to that of
↑-spin electrons by time-reversal. One can prove [8] that
the topological properties of the superconductor do not
at all depend on the topological properties of the normal
bands, and non-trivial topology requires p-wave pairing.
We consider a triplet pairing with odd parity

∆̂(k) = dz(k)σx ⊗ τ0, (2)
with dz(k) = ∆ (sin kx − i sin ky). The Pauli ma-
trix σx operates in spin space. The Bogolyubov�
de Gennes (BdG) matrix in the particle-hole basis,(

(ĉ↑)(ĉ↓)(ĉ
†
↑)(ĉ

†
↓)
)
, splits into two 4×4 matrices.

We consider now only the subspace
(

(ĉ↑)(ĉ
†
↓)
)
. The

parameter choice µ = 0.6, t1 = 0.07, t2 = −0.08, pro-
duces a Fermi surface with 3 pockets centered at (0, 0),
(0, π), (π, 0) in the Brillouin zone, as Fig. 1 (left part)
shows. We calculate the topological index (the Chern
number) following a method for multiband systems [9]
and obtain C = +1, indicating that one MF exists. The
energy spectrum for an in�nite ribbon in the yy (or xx)
direction, for ∆ = 0.1, is shown in Fig. 2, where the MF is
clearly seen at longitudinal momentum π. If we consider
the Andreev problem for a N/S interface along yy, the
MF is detected when the incident electrons have trans-
verse momentum ky = π and thus traverse only one FS
pocket, at (0, π). By reversing the sign of the hopping pa-
rameter t2, a topologically trivial phase is obtained, with
zero Chern number, and the Fermi surface now contains
4 pockets, as can be seen from the right part of Fig. 1,
and no MF's should exist.
In the framework of single band BTK theory, each

Fermi pocket should contain one zero energy Andreev

(210)
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Fig. 1. Fermi surface pockets for model (1)�(2), with
t2 = −0.08 (left) and t2 = 0.08 (right).
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Fig. 2. Spectrum of model (1)�(2) for a ribbon geom-
etry. t2 = −0.08.

bound state. This is because the pairing function is odd,
so that the electrons feel a sign change in the gap func-
tion upon specular re�ection at the superconductor's sur-
face [10]. Thus 3 or 4 ABS's or MF's are predicted by
BTK theory, at con�ict with the topological properties.
The single MF observed when only a single FS pocket
is crossed implies that somehow the two Andreev bound
states predicted by BTK theory for the pockets (0, 0)
and (π, 0) should interfere destructively when the inci-
dent electron has transverse momentum ky = 0.

3. The Andreev problem

We consider a N/S boundary along yy axis. The inci-
dent electron from a single band normal metal will split
into the two pseudo-spin channels of the superconductor,
as Fig. 3 explains.

Fig. 3. Tight-binding showing the splitting of the in-
coming electron into two pseudo-spin channels of the
superconductor, similar to a waveguide.

In the N side, x ≤ 0, the wave function for electrons
near the Fermi level is exp(ikyy)ψN where

ψN (x ≤ 0) =

(
1

0

)
e ip+x + b

(
1

0

)
e− ip+x

+a

(
0

1

)
e ip−x. (3)

The momenta p± are close to the Fermi momentum
pF and are �xed by the energy, E. The amplitudes
for electron re�ection, b, and Andreev hole re�ection,
a, allow us to obtain the di�erential conductance as
gs = 1+ |a|2−|b|2, whereas the normal state conductance
is just gn = 1− |b|2. We shall consider here only ky = 0
or π. The transmitted waves into the MBS are superpo-
sitions of wavevectors k±, q± from two FS pockets (see
Fig. 1) and the wave function for x ≥ 0 is exp(ikyy)ψS

where

ψS(x ≥ 0) = Cφk+ e ik+x + φk−De− ik−x

+Eφq+ eiq
+x + Fφq− e−iq

−x, (4)
where each φk denotes a four-dimensional column eigen-
vector of the BdG matrix, ĤS(k). The x-components of
the momenta, k±, q±, are chosen so that the group ve-
locity is positive for energy E above the gap. For subgap
energies, the momenta have a positive imaginary part.
In QWT the matching conditions for wave functions

(3) and (4) at x = 0 are written as [5, 6]:

ψN (0)⊗

(
1

1

)
= ψS(0), (5)

∂kx
ĤNψN (0) =

(
1 1 0 0

0 0 1 1

)
· ∂kx

ĤSψS(x = 0). (6)

Here, HN denotes a BdG Hamiltonian matrix for the
normal metal. Interface disorder can be accounted for
[5] by making the replacement: 1− b→ 1− b− 2iZ(1 +
b)pF /p+ and a→ a(1−2iZpF /p+) in the right-hand side
of Eq. (6), and where Z denotes the BTK parameter [7].

4. Results

According to QWT [5], the condition for the existence
of ABS is obtained from the 4×4 matrix Λ composed of
the four column vectors φk+ , φk− , φq+ , φq− , in Eq. (4).
The condition then reads

det Λ = 0. (7)
We checked that condition (7) does not hold for trans-
verse momentum ky = 0 either in the topological (t2 =
−0.08) or in the non topological case (t2 = +0.08). For
transverse momenta ky = π, Eq. (7) is veri�ed only in the
topological case. This means that the quantum interfer-
ence e�ects from the two FS pockets e�ectively anihilate
the two ABS's that would be predicted by single pocket
BTK theory.
One might be tempted to read condition (7) as the

requirement that the linear system in Eq. (5) be homo-
geneous and the wave function ψS be made to vanish [11]
at the N/S boundary. This would be incorrect, however,
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as it would imply the conductance gs to vanish. On the
contrary, the conductance gs is �nite and independent
of the disorder parameter Z at the energy value where
Eq. (7) is obeyed [5, 7, 10].
For the non-topological case, the di�erential conduc-

tance at normal incidence, ky = 0, is shown in Fig. 4
(left). It is seen that the quantum interference supresses
quasi-particle transmission, gs, as E → 0 and the e�ect
is even more pronounced as disorder increases. A similar
result is obtained at ky = π. Features such as peaks and
dips are visible when the energy E crosses the supercon-
ducting gaps on the Fermi pockets. For the topological
case, the di�erential conductance at normal incidence,
ky = 0, is shown in Fig. 5. A similar destructive interfer-
ence is observed at low energy.
For transverse momentum ky = π, the ABS (MF)

leaves its imprint on the conductance, as Fig. 6 shows.
The di�erential conductance attains the maximum value
gs = 2 at E = 0, independent of Z.

Fig. 4. Di�erential conductance at normal incidence
(left) and for ky = π (right). t2 = 0.08. Dashed line:
normal state di�erential conductance.

Fig. 5. Di�erential conductance at normal incidence,
for t2 = −0.08. Dashed line: normal state di�erential
conductance.

5. Conclusions

When the number of Fermi pockets is odd, the MF is in
the single pocket that is traversed by the quasi-particles.
The other pair of pockets interfere destructively, recon-
ciling the ABS number with the topological index. In
addition to the destruction of the ABS's, the waveguide

Fig. 6. Di�erential conductance for ky = π and t2 =
−0.08.

interference e�ects also produce a vanishing conductance
at E = 0, when a pair of FS pockets is traversed by the
quasi-particles.
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