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1. Introduction

The achievement of the Bose�Einstein condensation
(BEC) [1], degenerate Fermi gases [2, 3] was a remarkable
attainment in experimental physics. The ultra-cold gases
have been trapped magnetically in potential accurately
approximated by harmonic oscillator wells. In the men-
tioned experiments ultra-cold atomic gases are isolated,
i.e. do not exchange energy and matter with exterior and
they contain mesoscopic number N of atoms, much lower
than the Avogadro number NA (N ≈ 103−106). In many
experiments ultra-cold atomic gases are diluted, which
makes the ideal gases fairly good approximation. This
means that the physics of such ultra-cold gases should be
described by the microcanonical approach to ideal quan-
tum gases.
In the theoretical description of a system containing

a �nite number of particles, e.g. small metal particles
(for example quantum dots and wires) [4, 5], and the �u-
orescence from a few electrons [6] one is not allowed to use
the thermodynamic limit in which the particle number N
and the volume V go to in�nity with the density N/V
kept constant, leading to a continuum of single-particle
levels. For the proper description of �nite systems, the
discrete nature of the single-particle spectrum has to be
taken into account. These facts make impossible the
standard use of grand-canonical Gibbs ensemble in ther-
modynamic limit.
However, a microcanonical theory of quantum gases is

quite di�cult. For an ideal Bose gas in a harmonic trap,
Grossmann and Holthaus [7, 8] related the problem to the
number-theoretical studies of partitions of an integer q to
them integers. The exact electron distribution in certain
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small isolated systems was derived from the enumeration
of the partitions of integers [9]. Kubasiak et al. [10] re-
late the problem of an ideal Fermi gas in a harmonic trap
to the studies of partitions of q into m distinct integers.
Schmidt and Schnack [11] related boson/fermion parti-
tion functions to symmetric polynomials.
Ligare [12, 13] pointed out that the harmonic oscilla-

tor potential used to model experiments on the Bose�
Einstein condensation of �nite isolated atomic gases sim-
pli�es the numerical microcanonical analysis. As a rule
the canonical theory of ideal quantum gases is simpler.
It was proven that canonical and microcanonical de-
scriptions of �nite systems of quantum gases trapped in
1D harmonic traps are equivalent [14�16].
In this paper we report on the numerical stability

of method of recursion relations applied in the frame
of canonical theory to �nite systems of ideal gases of
fermions [17] trapped in 1D harmonic oscillators wells.
After Shankar [18] we shall call these systems the gases
of fermionic oscillators.
The case of bosons in such traps is discussed many in

papers, e.g. [19, 20].

2. Free energy and thermodynamic functions

The energy spectrum of a particle in 1D harmonic well
is non-degenerate and equidistant

εi = i∆ (i = 1, 2, 3, . . .) . (1)

In our calculations we shall ignore the zero point energy
∆/2, which plays no role in statistical physics. With the
Fermi energy εF the level spacing ∆ = εF/N .
We consider the gas of the Fermi oscillators in the

frame of canonical ensemble. T is temperature of this gas.
The number of particles N of the gas is �xed. The num-
ber of particles N and the energy E of the gas ful�ll two
obvious conditions

N =

∞∑
i=1

ni, E =

∞∑
i=1

(i∆)ni, (2)
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where ni = 0, 1 is the occupation number of i-th one-
particle energy level (i = 1, 2, 3, . . .). The �rst condition
of (2) makes the calculation of the canonical partition
function more di�cult than the evaluation of the grand
canonical partition function.
Let us write down the partition function ZN account-

ing for the condition imposed on the occupation numbers

Zn =

1∑
n1=0

1∑
n2=0

. . . exp

(
−
∞∑
i=1

εini/θ

)
δ
N,

∞∑
j=1

nj

, (3)

where θ = kBT is the temperature of the bath in natural
units.
Schönhammer [17] derived the recursion relation con-

necting the partition functions of systems of N and
(N − 1) particles

Zn =
e−N∆/θ

1− e−N∆/θ
ZN−1, (4)

with

Z1 =

∞∑
i=1

e− i∆/θ =
e−∆/θ

1− e−∆/θ
. (5)

The ratio ZN−1/Zn can be expressed by the chemical po-
tential

ZN−1/Zn = eµn/θ. (6)

From Eqs. (4), (5) it follows that:

Zn = e−E
(0)
n /θ

n∏
m=1

(
1− e−m∆/θ

)−1
(7)

where E
(0)
n =

n∑
i=1

i∆ = ∆N (N − 1) /2 is the ground state

energy of the gas.
As one may expect, the obtained partition function has

exactly the form of a partition function of N uncoupled
harmonic oscillators [21] with frequencies ωi = i∆/~.
The highest frequency is ωn = N∆/~ = εF/~.

Fig. 1. Dependence of speci�c heat per particle Cn/N
on temperature for N = 1000. In the inset Cn/kBN
vs. θ/εF is shown for various number of particles N for
small ratio θ/εF .

The knowledge of the partition function Zn allows one
to calculate the free energy Fn (θ), the internal energy

Un (θ), the heat capacity Cn (θ):

Cn (θ) = kB

n∑
s=1

(m∆/θ)
2(

em∆/θ − 1
)2 em∆/θ =

kB

n∑
m=1

(mεF/Nθ)
2(

emεF/Nθ − 1
)2 eemεF/Nθ,

and the chemical potential µn (θ) = [Fn (θ)− FN−1 (θ)]:

µn = εF + θ ln
(
1− e−εF/θ

)
.

In Fig. 1 it is visible that for mesoscopic number of par-
ticles at low temperatures the heat capacity is a linear
function of temperature.

3. Recursion relations for a gas

of fermionic oscillators

Now we shall study mean values of the occupation
numbers 〈ni〉N :
〈ni〉n = (8)

Z−1n

1∑
n1=0

1∑
n2=0

. . . nj exp

− ∞∑
j=1

εjnj/θ

 δ
N,

∞∑
m=1

nm

.

Following [17] one obtains

〈ni〉n =
(
1− 〈ni〉N−1

)
e−(εi−µn)/θ.

If 〈ni〉n = 〈ni〉N+1 the above formula leads to the Fermi�

Dirac distribution 〈ni〉F =
[
e(εi−µ)/θ + 1

]−1
.

Fig. 2. Gas of fermionic oscillators contains N = 1000
particles. Dependence of mean value of occupation num-
bers 〈ni〉n on the number of the energy level for various
values of the ratio εF/θ. Values of this ratio are indi-
cated at the curves.

However, we shall study deviation from this function.
For this end one uses the recursion relations. One of
them is the �upward version� of it

〈ni+1〉n = a(↑) − b(↑)i 〈ni〉n , (9)

where

a(↑) =
(
1− e−εF/θ

)
,
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b
(↑)
i = e−εF/θ

(
e i∆/θ − 1

)
= e−εF/θ

(
e iεF/Nθ − 1

)
.

The �upward version� of the recursion relation can be
transformed to the �downward version� of it

〈ni〉n = a
(↓)
i − b

(↓)
i 〈ni+1〉n , (10)

where

a
(↓)
i =

eεF/θ − 1

e iεF/Nθ − 1
,

b
(↓)
i =

eεF/θ

e iεF/Nθ − 1
.

Results of solution of Eqs. (9) and (10) are shown
in Fig. 2.

4. Examination of the stability of numerical

calculations

Using Eq. (9) we begin calculations with 〈n1〉n =
[1− exp (−εF/θ)]. The upward iteration becomes numer-
ically unstable for i > imax, where imax depends on tem-
perature and the number of particles. This means that
procedure is stable for i < imax (for i below the full line
in Fig. 3).

Fig. 3. Dependence of imax and imin on the inverse of
temperature.

Using Eq. (10) one may begin calculations with i =
(N +M). The value of M is arbitrary, as long as i > N .
The downward iteration becomes unstable for i < imin,
which also depends on temperature and N (for i above
the dashed line in Fig. 3). For (εF/θ)s the lines in Fig. 3
intersect.
We conclude that for εF/θ > (εF/θ)s, i.e. in the low

temperature region, there exists solution of recursion re-
lations (9) and (10). In the high temperature region
where εF/θ < (εF/θ)s numerical calculations are unsta-
ble, hence the recursion relation has not solutions.
One may ask if the temperature region where numeri-

cal instability precludes numerical solution of the recur-
sion relation depends on N . In Fig. 4 it is seen that

for low temperatures (we chose θ = εF/10) there exist i
obeying the inequality imin < i < imax. With growing
N imin → imax.

Fig. 4. Dependence of imax and imin on the number of
particles N for θ = εF/10.

Fig. 5. Dependence of imax and imin on the number of
particles N for (εF/kBT ) = 0.1.

Similar behavior is observed for high temperature re-
gion (cf. Fig. 5). For θ = 10εF , i.e. in the high tempera-
ture region, imin → imax with growing N .
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