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A Finite-Element Flash Method
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A laser beam is used to heat a portion of liquid closed in a vessel from the top of it to avoid convection.
The temperature is measured at the bottom of the vessel by a laser waveguide sensor. The heating and measuring
methods allow using a small amount of liquid of the order of a milliliter fraction. The heat �ow through the liquid
as well as the surrounding vessel and space is modeled by the �nite-element method to calculate the temperature
at the bottom vs. time. Thus obtained dependence is used then as a �tting function to get the liquid thermal
conductivity among some other �tting parameters.
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1. Introduction

From the year of its invention [1], the laser �ash
method (LFM) for measuring thermal di�usivity has con-
sisted in heating a sample from the front side and de-
tecting the time-dependent temperature from the back
side. The initial perfect conditions, i.e. homogeneous
and one-dimensional material, homogeneous input en-
ergy distribution on the front, an in�nitely short pulse
and no heat losses, were soon enriched by radiation and
convection losses on the front [2], side heat losses together
with transient heat transfer in the sample and �nite-pulse
e�ects [3] (with a correction in [4]), [5, 6]. The e�ects
of nonuniform surface heating were taken into consider-
ation in [7]. The actual dimensions of the heat pulse
on the front face, and of the temperature sensing area
on the back face of the sample were taken into account
in [8]. Further improvements of the assumptions were
made in [9], where additionally high-order solutions of
the analytical description were applied together with the
nonlinear regression routine allowing �tting experimental
data to yield thermal di�usivity values with high accu-
racy. Other authors established analytical solutions by
means of the Laplace transform [10] or the Green func-
tions [11]. An application of the gray-body theory for
thermal radiation inside a liquid sample at high temper-
atures [12] was another achievement. The same authors
solved their model equations numerically using a �nite-
di�erence scheme.
In the presence of so many di�erent factors that in-

�uence the heat-conduction process in a sample tested
and that are di�cult to describe analytically, the au-
thors of this paper decided to take into account those fac-
tors by means of the �nite-element method. The method
has been oriented towards testing the thermal di�usivity
and conductivity of a liquid material. The �nite-element
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method allows to take into consideration, except many of
the above-mentioned factors, also convection with vary-
ing temperature on the surface of the sample and sur-
rounding vessel, convection in the liquid sample, heat
losses by the temperature sensor as well as thermal ex-
pansion of it. The latter e�ect may be signi�cant at a
rapid temperature-variation stage since a waveguide tem-
perature sensor, when widens non-uniformly, falsi�es its
temperature indication.

2. Method description

An infrared laser beam is used to heat a portion of liq-
uid closed in a cylindrical vessel from the top of it, as it is
shown in Fig. 1. The vessel has insulating properties and
is made of foamed polystyrene. Heating the sample from
the top helps avoiding a convection in the main phase
of measurement when the heating is on. The liquid is
covered by a metal plate with black oxidation. The plate
�oats on the liquid surface by means of the surface ten-
sion only to avoid errors connected with heat transfer
by a plate mounting. The temperature is measured as a
function of time at the bottom of the vessel by a laser
waveguide sensor. The temperature sensor has its work
area with a length that is equal to the sample diame-
ter to avoid errors connected with temperature sensing
area that does not cover the whole sample bottom [8].
The measuring device is placed in a temperature stabi-
lized zone. The stabilization is ensured by thick outside
walls made of steel; the wall-to-sample heat-capacity ra-
tio is about 104. The heating and measuring methods
allow using a small amount of liquid of the order of a
milliliter fraction.
The following heat losses has been taken into consid-

eration:

� heat conduction through the insulating vessel,

� heat conduction through the surrounding air,

� free convection in air above the cover plate and
vessel,

(193)

http://dx.doi.org/10.12693/APhysPolA.128.193
mailto:janand@prz.edu.pl


194 J.A. Mamczur, A. Wasilewski, T. Wi¦cek

Fig. 1. Diagram of the measuring system.

� thermal radiation from the black cover plate,

� heat conduction through the waveguide thermome-
ter.

The heat �ow through the liquid as well as both the sur-
rounding vessel and space has been modeled by the �nite-
element method to calculate the temperature at the bot-
tom vs. time. The following �nite-element-method as-
sumptions has been taken for granted:

� the following parameters are known:

� the constant ambient temperature T0, that is
also an initial temperature of the whole mea-
suring system;

� the density, ρ, and speci�c heat, c, of the
anisotropic liquid tested;

� the density, ρv, and speci�c heat, cv, of the
insulating vessel;

� the density, ρ0, speci�c heat, c0, thermal con-
ductivity, λ0, and kinetic viscosity, ν0, of air;

� the density, ρc, speci�c heat, cc, thermal con-
ductivity, λc, and thermal emissivity, ε, of the
cover plate;

� the density, ρm, speci�c heat, cm, and thermal
conductivity, λm, of the waveguide tempera-
ture meter;

� the time, th, of constant heating;

� the following parameters are initially assumed,
though they are changed by the �tting method:

� the heat �ux, q, of the laser radiation,
in W/m2;

� thermal conductivity, λv, of the insulating ves-
sel;

� the thermal conductivity, λ, of liquid investi-
gated (the main parameter sought);

� the following dimensions are known:

� the vessel inside and outside diameter and
height, D and D0, L and L0, respectively;

� the thickness of the black metal cover, gc;

� the inside and outside diameter, dm and Dm,
of the waveguide temperature meter;

� the liquid region is divided into parallel cylindri-
cal layers (assumption of constant temperature in
a layer, justi�ed by the outside insulation);

� the insulating vessel and the waveguide are divided
into coaxial rings.

The heat equation in cylindrical coordinates

λ

(
1

r

∂T

∂r
+
∂2T

∂r2
+
∂2T

∂z2

)
= ρc

∂T

∂t
+ q, (1)

is transformed by the �nite-element method to the fol-
lowing equation for an inner thin cylindrical element of
liquid sample with radius r = D/2:

T (z, t+∆t) = T (z, t) +
2λsv∆t

ρcr∆r
[Tv(r +∆r, z, t)

−T (z, t)] + λ∆t

ρc∆2
z

[T (z +∆z, t)− 2T (z, t)

+T (z −∆z, t)] , (2)

where z is the down-sense vertical coordinate of the thin
liquid element, T is its temperature and ∆z is its thick-
ness, Tv is the temperature of the insulating-vessel thin
ring with the radius, axial and radial thickness, r = D/2,
∆z and ∆r, respectively, λsv is the e�ective thermal con-
ductivity for the sample-vessel boundary and is given by

λsv =
2λλv
λ+ λv

. (3)

Equation (1), for the thin cover plate with the radius
r = D/2, is transformed by the �nite element method to

Tc(z, t+∆t) = Tc(z, t)
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+
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+
εσ∆t
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[
To4 − T 4

c (z, t)
]
, (4)

where Tc and T0 are the temperatures of the plate-cover
and the ambient air, respectively, z = 0 for the cover,
λcs, λco and λcv, are the e�ective thermal conductivities
for the cover�sample, cover�air and cover�vessel bound-
ary, respectively, that are determined by the similar-to-
Eq. (3) formulae, q(t) is the time-dependent heat �ux,
q(t) = const > 0 for 0 ≤ t ≤ th, σ is the Stefan�
Boltzmann constant and h is the laminar-convection con-
ductivity for a horizontal plate given by [13]:
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h =
0.54λ0Ra

1/4

δ
, Ra =

gβ

ν0α0
(Tc − To) δ3. (5)

where δ is the characteristic length, δ = πr/2, Ra is the
Rayleigh number, g is acceleration of gravity, β = 1/T0
for an ideal gas and ν0 and α0 are the kinetic viscosity
and thermal di�usivity of air, respectively.
Finite-element equations for other elements, i.e. coax-

ial vessel rings, coaxial waveguide rings and concentric
semispherical air layers, have been created similarly to
Eq. (2) and (4). The numerically obtained dependence

Fig. 2. The temperature measured (black) and the
function �tted (gray) for 10% MgAl2O4�diethylene-
glycol nano�uid. Heating time th = 90 s. The number
of measuring points N = 1400.

of the temperature at the bottom, Tb(t) ≡ T (L, t), upon
the time has been used as a �tting function to get the
liquid thermal conductivity, λ, among other �tting pa-
rameters, q and λv. Since the insulating-vessel thermal
conductivity, λv, is di�cult to measure and varies along
with di�erent kinds of foamed polystyrene, it is conve-
nient to make it a �tting parameter. Therefore, time
range for temperature measurement must be wide enough
to include the long time of self-cooling so that the mea-
suring curve features more characteristic, as it is shown
in Fig. 2. The partial derivatives, ∂Tb/∂λ, ∂Tb/∂q and
∂Tb/∂λv, needed during curve-�tting has been calculated
numerically, which requires double computing the whole
�nite-element procedure for each derivative for two dif-
ferent values of λ, q or λv, and of course for each time.
The method has been tested and calibrated on wa-

ter and diethylene glycol. The thermal conductivity of
the investigated liquid, 10% MgAl2O4�diethylene-glycol
nano�uid, has been estimated by the �tting procedure at
λ = (0.28547± 0.00024) W/mK. The uncertainty in the
above result has been calculated by the �tting procedure
from the measuring-points scattering, which is visually
negligible compared to the next factor, and from the nu-
merical model ability to adapt to measuring points. This
uncertainty, denoted by u0(λ), must be enlarged to the
following expression for the total uncertainty u(λ):

√√√√u20(λ) +
∑
i

(
∂λ

∂ai
u(ai)

)2

=

λ

√√√√k20 +
∑
i

(
ki
u(ai)

ai

)2

, (6)

where ai and u(ai) are any input parameter and its un-
certainty, adequately, ki is the coe�cient of in�uence of
the parameter uncertainty on the thermal conductivity
uncertainty. The derivatives in Eq. (6) have been calcu-
lated numerically. The ki coe�cients are shown in Table.

TABLE

The coe�cients, ki, for some input parameters.

k0 L D D0 c ρ cv ρv gc

0.00084 2.0 0.16 0.063 0.86 0.80 0.046 0.032 0.0028

3. Conclusions

The thermal-conductivity relative uncertainty, k0,
achieved during �tting the numerical heat-transfer model
to experimental data, shows the quality of the model it-
self, though such accuracy is accomplished when every
parameter is measured with relative uncertainty less than
k0/ki. Such accuracy has been achieved for the sample
with a quarter-milliliter volume.
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