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The one-dimensional attractive Hubbard model (U � 0) is discussed for the chains of N nodes and the same
number of electrons, where N − 1 of them have the same spin projection, assuming periodic boundary conditions
and the half-�lling case. Based on the analysis of the eigenvalue problem we provided the general analytical
expression for the eigenvalues, for any number N . This formula implies the existence of two elementary particles
with mutually dependent momenta on the ring with N sites the same number of electrons including N − 1 of the
same spin projection.
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1. Introduction

The Hubbard model [1�3] has become increasingly im-
portant in condensed matter physics since it is related
to topics such as ferromagnetism, antiferromagnetism,
the Mott transition, high-temperature superconductivity
or Bose�Einstein condensate in cold optical lattice [4�
7]. The exact solution of the Hubbard Hamiltonian ex-
ists only for one spatial dimension, published by Lieb
and Wu [8] in year 1968. They used the method called
nested Bethe Ansatz [9], and found the large set of nor-
malized and mutually orthogonal eigenfunctions. The re-
sults are not easy to analyze and the completeness of the
obtained set of eigenfunctions was not considered [10].
We continue the work with one spatial dimension [11�
14], which may become more important due to its pos-
sible applications in intensively studied carbon nano-
tubes, one-dimensional organic superconductors, or one-
dimensional organic ferromagnets [15]. There is also pos-
sibility of modelling the one-dimensional Hubbard model
of fermionic quantum gas immersed into an optical lat-
tice [16], which is a promising candidate for quantum
information processing.
We consider the one-dimensional attractive Hubbard

model (U � 0) [13, 14] assuming periodic boundary con-
ditions and the half-�lling case. The considered chains
have N nodes, the same number of electrons includ-
ing N − 1 of the same spin projection.

2. The symmetry of the system

The dynamics of the �nite set of electrons, occupying
the one-dimensional chain consisting of N atoms, can be
described by the Hubbard Hamiltonian in the following
form:
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Ĥ = −t
∑
i∈2̃

∑
j∈Ñ

(â†jiâj+1i + â†j+1iâji)

+U
∑
j∈Ñ

n̂j+n̂j−, (1)

where Ñ = {j = 1, 2, . . . , N} denotes the set of atoms of

the chain, 2̃ = {i = +,−}, n̂ji = â†jiâji, and �nally â†ji,
âji are the canonical Fermi operators, that is creation
and anihilation operators of electron of the spin i, on
the site j. In general U can be any value, with U < 0
(U � 0 � the case presented in this article) and U > 0
(U � 0 [17]) are responsible for attraction and repulsion,
respectively, but U = 0 stands for no e�ect or plain gas
of fermions.
Since the periodic boundary condition are assumed,

the Hamiltonian (1) has the obvious translational sym-
metry (âN+1i = â1i), this means that one-particle Hamil-
tonian of the form (1) is completely diagonalized by a
Fourier transformation [18] of the form

a†k =
1√
N

∑
j∈Ñ

e i 2πkj/Na†j , k ∈ B, (2)

where

B={0,±1,±2, . . . ,

{
±(N/2− 1), N/2 for N even

±(N − 1)/2, for N odd

}
. (3)

The symmetry SU(2)× SU(2) [19] provides two sets of

generators, {Ŝz, Ŝ+, Ŝ−} and {Ĵz, Ĵ+, Ĵ−}, for spin and
charge, respectively. These generators can be written in
the following forms:

Ŝz =
1

2

∑
j∈Ñ

(â†j+âj+ − â
†
j−âj−),

Ŝ+ = Ŝ†− =
∑
j∈Ñ

â†j+âj−, (4)

Ĵz =
1

2

∑
j∈Ñ

(â†j+âj+ + â†j−âj− − 1),

Ĵ+ =
∑
j∈Ñ

(−1)j â†j+â
†
j−, Ĵ− =

∑
j∈Ñ

(−1)j âj+âj− (5)
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and the transfer between these two sets is known as the
Shiba transformation [8, 19, 20]. The eigenvalues of the

operators Ŝz and Ĵz are labeled by M and Jz, whereas
the eigenvalues of the operators

Ŝ2 =
1

2
(Ŝ+Ŝ− + Ŝ−Ŝ+) + Ŝ2

z (6)

and

Ĵ2 =
1

2
(Ĵ+Ĵ− + Ĵ−Ĵ+) + Ĵ2

z , (7)

are labeled by S(S+1) and J(J+1), respectively, due to
the quantum algebra of the angular momentum. In the
case under consideration this symmetry is reduced to
the SU(2) × I symmetry active only in the pseudo-spin
space, where I denotes the identity element of the group
SU(2), since the singly occupied atoms have the same
spin projection.

3. Energies

The electron con�guration can be de�ned in the form
of the following mapping:

f : Ñ −→ 4̃, (8)

where

4̃ = {±, ∅,+,−}, (9)

∅ denotes the empty node, + and − stand for one-node
spin projection equal to 1

2 and − 1
2 , respectively, ± de-

notes the double occupation of the one node by two elec-
trons with di�erent spin projections. The set of all lin-
early independent vectors given by the expression (8) pro-
vides the initial, orthonormal basis of the Hilbert spaceH
given as lcC4̃Ñ , where lcCA stands for the linear closure
of a set A over the complex �eld C.
For example the set of all electron con�gurations for

the case of U � 0, the number of electrons equal to
N = 4, where 3 electrons have the same spin projection,
has the following elements:
{| ± ∅+ + >, |+±∅+ >, |+ +± ∅ >, |∅+ +± >,
|∅ ±++ >, |+ ∅ ±+ >, |+ +∅± >, | ±+ + ∅ >,
| ±+∅+ >, |+±+ ∅ >, |∅+±+ >, |+ ∅+± >}.
In order to correctly identify the Hilbert space H for

the case with U � 0 let us introduce some notions of the
theory of the symmetric group. The action

A : ΣN × 4̃Ñ −→ 4̃Ñ (10)

of the symmetric group ΣN on the set 4̃Ñ provides the or-
bits Oµ of the group ΣN labeled by the weight µ, given as
the sequence of nonnegative integers µ = (µ1, µ2, µ3, µ4),
where the consecutive µi denote the number of occur-
rences of ±, ∅, + and − within the electron con�guration,
respectively, with relation

∑
i∈4̃ µi = N .

Since we consider only the case of U � 0, and the half-
�lling magnetic rings with N nodes occupied by Ne = N
electrons, including N − 1 electrons with the same spin
projection the set of allowing weights consists only of two
elements, that is

{(1, 1, N − 2, 0), (1, 1, 0, N − 2)}, (11)

and the dimension of the appropriate Hilbert space is

dimH = 4

(
N
2

)
, (12)

with two subspaces corresponding to two elements of the
set (11) of equal dimensions

dimH1 = dimH2 = 2

(
N
2

)
, (13)

where

H = H1 ⊕H2. (14)

The set of electron con�gurations for U � 0 do not con-
tain the elements with two atoms singly occupied by op-
posite spin projection (unpaired spins).
The representation of the system Hamiltonian takes

the form dependent on the parity of the number of elec-
trons N (or nodes in the considered half-�lling case),
and provides the quasidiagonal structure in the so-called
pseudo-spin basis � each block depends on the parity of
the value k+J , where J ∈ {0, 1}. The energies obtained
as the eigenvalues of the appropriate blocks of the Hamil-
tonian are given by the formula

E = U + 2 cos

(
lπ

N

)
a, l ∈ 1, 2, ..., N − 1, (15)

where a = 2t sin
(
kπ
N

)
or a = 2t cos

(
kπ
N

)
for odd and

even N , respectively.
After some simple calculations Eq. (15) can be rewrit-

ten in the following forms:

E = U + 2t sin

(
(k + l)π

N

)
+ 2t sin

(
(k − l)π
N

)
,

for odd N, (16)

E = U + 2t cos

(
(k + l)π

N

)
+ 2t cos

(
(k − l)π
N

)
,

for evenN, (17)

or

E = U + 2t sin(p1) + 2t sin(p2), for odd N, (18)

E = U + 2t cos(p1) + 2t cos(p2), for even N, (19)

with the relation

p1 + p2 = 2πk/N. (20)

Equations (16)�(20) allow to consider the case of the
one-dimensional attractive Hubbard model for the chains
with N atoms, the same number of electrons, and N − 1
of them with the same spin projection as the movement
of two elementary particles on the ring with N sites.
The �rst particle has the momentum p1 and the second
� p2 and the momentum of each particle is separately
conserved. One pair from (N−1)|B| mutually dependent
values of p1 and p2, where |B| denotes the cardinality of
the set B given by Eq. (3), constitutes one eigenstate of
the energy given by one of Eqs. (18) or (19) � ensuring
the completeness of the set of eigenvectors, thus

dimH1 = dimH2 = (N − 1)|B| = 2

(
N
2

)
, (21)

due to Eq. (13).
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4. Conclusions

The set {k, J, l} of quantum numbers provides all ex-
act solutions for the case of the one-dimensional attrac-
tive Hubbard model for the chains with N atoms, the
same number of electrons, and N − 1 of them with the
same spin projection. The translational symmetry pro-
vides the quasimomentum k and rotational symmetry
within the spinless part of the magnetic ring provides
the quantum number J whereas Jz, the total spin S
and the total magnetization M are �xed. The formula
E = U + 2t sin(p1) + 2t sin(p2) for the energies of the
considered system of electrons implies existence of two
elementary particles on the ring of the separately con-
served momentum p1 and p2, respectively. Each element
of the set of pairs of mutually dependent values p1 and p2
constitutes the one to one correspondence with the set of
eigenvectors of the considered problem, that is with the
basis of the appropriate Hilbert space.
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