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We discuss transport properties of graphene related to the resonant scattering from impurities and defects. Two
di�erent models describing defects in the bulk of graphene or at the graphene surface are used for the calculation
of self energy of electrons scattered from short-range impurities or defects. The results of numerical calculations
demonstrate a resonant character of resistance. In the case of neutral impurities or defects the scattering also leads
to a resonant decrease of the spin relaxation time.
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1. Introduction

Transport properties of graphene are a�ected by impu-
rities and defects, which can be located at the graphene
surface, �ake edges, or incorporated in the crystal lat-
tice substituting the carbon atoms [1�3]. Besides, there
is always some density of vacancies created thermody-
namically or generated by irradiation. Like in the case
of conventional semiconductors, the impurity perturba-
tion can be responsible for creation of impurity states in
graphene. However, the relativistic energy spectrum of
graphene [1, 2, 4] makes this problem quite di�erent from
the usual semiconductor [1, 5]. One of such pecularities
is related to the absence of gap, namely, if the impurity
state is formed it should be quasilocalized, which corre-
ponds to the resonance in the density of states.
In this work we consider the case of strongly localized

perturbation located within the lattice of graphene or
at the surface. In the latter case, the mirror symmetry
is broken locally, leading to the possibility of localized
Rashba spin-orbit perturbation [6]. As a result, scatter-
ing from the adatoms at the graphene surface can deter-
mine both the momentum and spin relaxation times.
The model with short-range perturbation potential

correponds to a neutral impurity or defect. This model
has been used for graphene [7, 8] to determine the possi-
ble e�ect on its transport [7] and thermoelectric proper-
ties [9, 10].

2. Model

The electronic structure of graphene in the vicinity of
Dirac points K and K ′ can be described by the following
Hamiltonian [11]:
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Ĥ0 = ~v(±τxkx + τyky), (1)

where v = c/300 is the electron velocity in graphene, c is
the speed of light, τx and τy are the Pauli matrices oper-
ating in sublattice (pseudospin) space. The plus/minus
sign in Eq. (1) refers to the electrons in non-equivalent K
and K ′ Dirac points, respectively.
The Hamiltonian of Eq. (1) can be diagonalized by a

unitary transformation and gives the valence and con-
duction bands with linear dispersion ε1,2(k) = ±~vk.
The electric current j in graphene can be induced by

the in-plane electric �eld E and/or by the temperature
gradient ∇T . To �nd the distribution function of elec-
trons in the n-th energy band, f (n)(k), of the system in
non-equilibrium we use the Boltzmann kinetic equation.
In the case of small deviation from equilibrium we get

−v(n)
x

∂f0

∂ε

(
∇µ+

ε− µ
T
∇T − eE

)
= −δf

(n)

τn
, (2)

where δf (n)(k) is the deviation from the Fermi�Dirac dis-
tribution function f0(ε), τn(ε) is the electron relaxation

time, and v
(n)
x is the x-component of electron velocity,

v(1,2)(k) = ±vk/k. For de�niteness, we take the electric
�eld and temperature gradient along axis x.
In a general case, when the current density j is induced

by the �eld E, temperature gradient ∇T , and gradient
of chemical potential ∇µ, we write

j = e
∑
nk

v(n)
x δf (n) =

e2K11E − eK11T∇
µ

T
− eK21

∇T
T
, (3)

where Krs are the kinetic coe�cients [12].
Using the linearity of the energy spectrum near K

and K ′ Dirac points, one can �nd the kinetic coe�cients
for graphene
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Krs = − 1

4π~2

∑
n

∫ ∞
−∞
|ε|εr−1τsn(ε)

∂f0

∂ε
dε. (4)

This expression includes the contribution of valence and
conduction bands.
The electric conductivity is related to K11:

σ = e2K11. (5)

As follows from Eqs. (4) and (5), the dependence of re-
laxation time on energy is especially important for the
conductivity.

3. Relaxation time

The graphene sheets can be doped with impurities in
two di�erent ways. Namely, the perturbation potential
can be located within the plane (e.g., impurity is re-
placing the carbon atom), or it can be located at one
side of the graphene surface (impurity adatom). In the
�rst case we can take for the single-impurity perturba-

tion V̂
(A,B)
1 = V

(A,B)
1 δ(r − R(A,B)), where A, B de-

notes graphene sublattice, which is occupied by impurity.
In the second case, one can identify such perturbation as
a local Rashba spin�orbit coupling in graphene, which
has the form V̂2 = V2δ(r)(τxσy − τyσx).
The Hamiltonian which includes any kind of impurity-

induced perturbation is Ĥ = Ĥ0 +
∑

i V̂m(r−Ri), where
the sum runs over all randomly distributed impurities
located at Ri positions, and m = 1, 2 refers to a cho-
sen model. Note that the model assumes a short-range
randomly distributed impurity potential with equal prob-
ability in the sublattice A and B (for intrinsic impurity),
and a homogeneous distribution above or below graphene
sheet (extrinsic impurity).
Using the T -matrix approach we can �nd the resonant

energy level in graphene. It corresponds to the impurity
scattering in all orders of perturbation. The equation for
the T -matrix is

T̂kk′(ε) = V̂kk′ +
∑
k′′

V̂kk′′Ĝk′′(ε) T̂k′′k′ , (6)

where Ĝk(ε) is the electron Green function related to

unperturbed Hamiltonian Ĥ0. For the short-ranged per-
turbation potential we �nd the T -matrix in the following
form:

T̂m(ε) =
(

1− V̂mF (ε)
)−1

V̂m, (7)

where F (ε) is

F (ε) =
∑
k

ε

(ε+ iδ)2 − (~vk)2
. (8)

Using Eq. (8) we can �nd for both types of impurities an
equation determining the resonance energy, θm(ε) = 0,
where we denote θ1(ε) = 1−V1F (ε) (for intrinsic impuri-
ties), and θ2(ε) = 1− 4V 2

2 F
2(ε) (for extrinsic impurity).

To �nd the relaxation time in the nth energy band
(n = 1, 2) we have to diagonalize the e�ective Hamil-

tonian Ĥeff = Ĥ0 + Σ̂m(ε), where Σ̂m(ε) = NiT̂m(ε) is
the self-energy related toresonanse impurity scattering.
Then the relaxation time of an electrons in the n-th band
can be found from

~
τ

(m)
n (ε)

= 2Im Σ(m)
n (ε), (9)

where Σ
(m)
n (ε) is the self energy after diagonalization

of Ĥeff .

The real and imaginary parts of function F (ε) can be
calculated from Eq. (8):

ReF (ε) ' − ε

2π(~v)2
ln

~vkmax

|ε|
, (10)

ImF (ε) ' − ε

4(~v)2
. (11)

Here kmax is the wave-vector cuto� for the linear disper-
sion in graphene, kmax ' (|K|+ |M |)/2, with K and M
denoting the wave vectors corresponding to the points K
and M of the graphene Brillouin zone.

The resonant levels in the case of intrinsic perturba-
tion correspond to negative energy for positive impurity
potential V1 > 0, whereas for V1 < 0 the energy of reso-
nance is positive. In the case of extrinsic perturbations,
the sign of impurity potential is not relevant, and the res-
onant states are located symmetrically at ±ε. The reso-
nance level ε strongly depends on the strength of impu-
rity potential V1,2, and this is re�ected in the momentum
relaxation time τn(ε). Note that the relaxation time be-
comes divergent in the Dirac points, ε = 0.

4. Numerical results

In the presence of resonant impurity, by using
Eqs. (4), (5), and (9) we calculated the conductivity σ.
As we see in Figs. 1 and 2, the conductivity strongly
depends on the position of chemical potential µ.

Fig. 1. (a) Electrical conductivity σ and (b) resistiv-
ity ρ as function of chemical potential µ. Here the im-
purity concentration is Ni = 2×1014 m−2, and temper-
ature T = 300 K.
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Fig. 2. (a) Conductivity and (b) resistivity of graphene
vs. chemical potential µ for chosen impurity poten-
tial V0 in the case of disordered Rashba SO pertur-
bation. In both �gures the impurity concentration
Ni = 2× 1014 m−2, and the temperature T = 300 K.

Figure 1a shows the dependence of conductivity σ on
the chemical potential µ for di�erent impurity poten-
tials, V1 < 0. In the region of |µ| < 1 eV the con-
ductivity monotonically decreases and has a minimum
for chemical potential equal to the energy of localized
state. For strong impurity potential V1 → ±∞ (like
for the graphene vacancy), the conductivity σ goes to
zero. The minimum of the curve is related to the posi-
tion of resonant level. The resistance for the correspond-
ing chemical potential has a strong maximum.
Scattering from the localized Rashba spin�orbit cou-

pling perturbation is also a�ecting the spin relaxation
time because electrons are spin-�ip scatterred. There-
fore, the resonant behavior of the momentum relaxation
time can be also viewed as a resonance (minimum) in the
electron spin relaxation.

5. Conclusions

We calculated the momentum relaxation time of elec-
trons in graphene scattered from randomly distributed
short range potentials related to impurities and defects.
The calculation includes all orders of perturbation, which
leads to appearance of the resonant states and, corre-
spondingly, to strong decrease of the relaxation time of
electrons with energy near the resonant state.
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