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Spin wave modes in antiferromagnetically exchange-coupled magnetic double layers are analyzed theoretically.
The considered structure is assumed to be covered by a nonmagnetic metallic layer. The spin wave frequencies
and spin wave life times are determined from the macroscopic description based on the Landau�Lifshitz�Gilbert
equation, which includes the torque due to spin pumping to the cap layer.
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1. Introduction

Spin waves in arti�cially layered magnetic structures
were extensively studied two decades ago [1, 2]. Of par-
ticular interest were spin waves in exchange-coupled dou-
ble layers, where two metallic magnetic �lms were sepa-
rated by a metallic nonmagnetic spacer [3�5]. The two
magnetic �lms in such structures are coupled via indi-
rect exchange interaction of RKKY type, which oscil-
lates between ferromagnetic and antiferromagnetic with
increasing thickness of the spacing layer [6]. The ex-
change interaction was shown to signi�cantly modify the
corresponding spin wave spectra [3�5, 7], which in turn
were used to determine the interlayer exchange coupling
parameter.
Recent interest in spin waves is associated, among

others, with spin currents inherently accompanying spin
waves, and with such phenomena like spin transfer torque
and spin pumping [8, 9]. In the latter case, a spin cur-
rent is pumped through a ferromagnet/nonmagnet in-
terface by precessing magnetic moment of the ferromag-
netic layer [10, 11]. In this paper we consider the in�u-
ence of spin pumping on the spin wave spectra in an-
tiferromagnetically coupled magnetic double layers with
perpendicular surface anisotropy. For simplicity, we as-
sume that the spin pumping and surface anisotropy oc-
cur only at the top interface of the studied structure, see
Fig. 1. By generalizing the macroscopic approach by Vohl
et al. [3], we calculate the spin-wave eigenfrequencies and
the related spin-wave life times.

2. Model

Figure 1 shows a magnetic structure under considera-
tion, which consists of two magnetic layers Fj (j = 1, 2)
separated by a nonmagnetic spacer. The structure is de-
posited on a nonmetallic substrate and is covered by a
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metallic cap layer. We assume that magnetizations of
both �lms in the ground state are antiparallel due to
antiferromagnetic interlayer exchange coupling, and are
parallel to the easy axis (±z-axis).

Fig. 1. Scheme of the magnetic double layer with an-
tiparallel alignment of magnetic moments. Two mag-
netic insulating layers, Fj , distinguished with the layer
index j (j = 1 for the top and j = 2 for the bottom
layers) are separated by a thin nonmagnetic metallic
spacer layer. The external interfaces are at x1 and x4,
while the internal interfaces are at x2 and x3, as in-
dicated. The red (dotted) arrows represent the spin
pumping current.

Internal dynamics of the j-th magnetic layer (j =
1, 2) is described by the Landau�Lifshitz�Gilbert (LLG)
equation

dMj

dt
= −γjµ0Mj ×Heff j +

αj

Msj

Mj ×
dMj

dt
, (1)

where Mj = Mj(r, t) is the magnetization of the j-th
layer, Msj = |Mj | is the corresponding saturation mag-
netization, αj is the Gilbert damping parameter, µ0 is the
vacuum permeability, and γj = |e|gj/2m, with e and m
being the electron charge and electron mass, respectively,
and gj denoting the Lande factor for the j-th layer. More-
over, Heff j =Heff j(r, t) stands for an e�ective magnetic
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�eld in the j-th layer

Heff j(r, t) =
Haj

Msj

[Mj(r, t) · êz] êz + hj(r, t)

+
2Aj

µ0Ms
2
j

∇2Mj(r, t), (2)

where Haj and hj are the anisotropy and dipolar �elds,
respectively, while the latter term describes the intra-
layer exchange interaction, with the exchange sti�ness
parameter Aj .

We restrict considerations to the Voigt geometry,
where spin waves propagate perpendicularly to the mag-
netization orientation. Let us assume plane-wave so-
lutions of frequency ω and wave vector q = (qx, qy),
and de�ne the vector ξj(r) = [mj,x(r),mj,y(r), ψj(r)],
consisting of the dynamical magnetization components,
mj,x(r) andmj,y(r), and the scalar potential ψj(r) de�n-
ing the dipolar �eld hj(r) via the magnetostatic equa-
tions, hj = −∇ψj(r). A general solution for the n-th
component (n ∈ {1, 2, 3}) of ξj(r) can be written in the
form [3]:

ξj,n =

3∑
l=1

[
C

(l)
j,n cos(kj,lx) +D

(l)
j,n sin(kj,lx)

]
e iq·ρ, (3)

where ρ = (x, y), and

k2
j,1 = −q2

y, (4a)

k2
j,2(3) = −

1

Qj

[
1/2 +

Haj

Msj

− iαjfj ±
√
f2
j + (1/2)

2

]
−q2

y. (4b)

Here, fj = ω/ωM,j , ωM,j = γjµ0Msj , and Qj =

2Aj/(µ0Ms
2
j ). For each j only 6 parameters, C

(l)
j,1 and

D
(l)
j,1 for l = 1, 2, 3, are independent. These parameters

can be determined from appropriate boundary conditions
at the four interfaces.

At the top external interface, located at x = x1, we ap-
ply the Rado�Weertman [12] boundary conditions, gen-
eralized by including the e�ects due to spin pumping(

A1
∂

∂x
− iG1ω

)
m1,y |x=x1

= 0, (5a)(
A1

∂

∂x
− iG1ω −Ks

1

)
m1,x |x=x1

= 0, (5b)

where G1 = ~gr1/(8π), with gr1 being the real part of the
mixing conductance of the top interface, normalized to
e2/h, while Ks

1 is the perpendicular anisotropy constant
at the top interface. The boundary conditions for the
bottom interface are similar to those given by Eqs. (5),
but with zero surface anisotropy and vanishing mixing
conductance. At the internal interfaces, in turn, we use
the standard Ho�mann boundary conditions [13]. In ad-
dition, the tangential component of hj(r) and the nor-
mal component of h(r)+m(r)must be continuous across
the interfaces, which leads to four additional boundary
conditions as described in Ref. [3]. Equations (5) to-
gether with the Ho�mann and magnetostatic conditions
form the complete set of 12 boundary conditions, which

have to be ful�lled by the magnetization and dipolar �eld.
These equations have solutions when the corresponding
determinant vanishes, and this condition is obeyed for
speci�c values of the frequency ω, which are the spin-
wave eigenfrequencies.

3. Results

The main objective of the analysis is a detailed descrip-
tion of the in�uence of spin pumping at the top interface
on the spin wave frequency and damping. For both mag-
netic �lms we assume parameters typical of yttrium-iron-
garnets (YIG) [14], i.e. Aj = 4.17× 10−12 J m−1, Msj =

1.56×105 A m−1, Ks
j = 10−4 J/m2, αj = 6.7×10−5, and

gj = 2 (for j = 1, 2). For the thickness of the magnetic
layers we assume L1 = L2 ≡ L = 100 nm. In turn, thick-
ness of the spacing layer is assumed to be much smaller.
This thickness determines the interlayer exchange cou-
pling, and thus it is e�ectively included in the calcu-
lations via the interlayer exchange parameter A12. Al-
though, the dynamic coupling between the two magnetic
layers via the spin pumping is possible, we do not address
this problem here and assume that the mixing conduc-
tance of the nonmagnetic spacer is negligible.
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Fig. 2. Spin waves eigenfrequencies in the antiparal-
lel magnetic con�guration as a function of qyL, calcu-
lated for A12 = −5× 10−4 J m−2 and in-plane uniaxial
bulk anisotropy Ha = 10−2Ms. (a) real part of the fre-
quency ω, (b) imaginary part of ω in the case of no spin
pumping, (c) imaginary part of ω in the case of spin
pumping at the top interface, gr1 = 1017 m−2.

Figure 2 shows the real and imaginary parts of the spin
wave eigenfrequency as a function of the wave vector qy
for the lowest six modes and for two opposite propaga-
tion orientations. The corresponding mode pro�les, cal-
culated for qyL = 0.1, are shown in Fig. 3. Here n is
the mode index, with n = 1 corresponding to the low-
est mode and increasing with increasing mode frequency.
The �rst two modes have mixed surface-bulk character.
The higher modes contain much less interfacial contribu-
tion. The �rst mode is localized at the bottom interface
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Fig. 3. Mode pro�les corresponding to Fig. 2 for
qyL = 0.1.

and almost vanishes at all others interfaces, while the
modes corresponding to n = 2, 3 are more pronounced at
the top interface and remain nonzero also at the internal
interfaces. Therefore, these two modes are particularly
in�uenced by the spin pumping at the top interface.
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Fig. 4. Spin waves eigenfrequencies in the antiparallel
con�guration as a function of A12 for qyL = −0.1 (left
column) and qyL = 0.1 (right column). (a,b) Real parts
of frequency ω, (c,d) imaginary parts of ω in the case of
no spin pumping, (e,f) imaginary parts of ω in the case
of spin pumping at the top interface, gr1 = 1017 m−2.
Other parameters as in Fig. 2.

The interface anisotropy changes separation of the
modes marked with n = 2 and n = 3, especially for
qyL close to −1. This can be seen when comparing the
spectrum in Fig. 2 with the corresponding one in the ab-
sence of anisotropy (not shown). Apart from this, the
real parts of the eigenfrequencies reveal nonreciprocality
of the surface mode propagation, i.e. the mode frequen-
cies for qy > 0 and qy < 0 are di�erent. This di�er-
ence depends on the surface mode contribution to a par-
ticular eigenmode, and disappears for pure bulk modes.
The spin wave nonreciprocality is visible also in the imag-
inary parts of the eigenfrequencies, Fig. 2b,c.
The imaginary parts of the eigenfrequencies determine

the spin wave life time. These life times are remarkably
in�uenced by the spin pumping, as follows from Fig. 2b

and c, which show the imaginary parts of ω in the absence
and presence of the spin pumping at the top interface,
respectively. Generally, spin pumping enhances the spin
wave damping, while its in�uence on the real parts of ω
is less important.
Variation of the spin wave eigenfrequencies with the

interlayer exchange parameter A12 is shown explicitly
in Fig. 4. The nonreciprocality of surface mode prop-
agation is also clearly seen, when comparing left (for
qyL = −0.1) and right (for qyL = 0.1) parts of Fig. 4.
Both real and imaginary parts of the eigenfrequencies
vary with A12 at small values of the interlayer coupling,
and then quickly saturate with increasing A12.

4. Summary

We have analyzed the in�uence of spin pumping on the
spin wave modes propagating in a magnetic double layer
with antiferromagnetic interlayer exchange-coupling and
surface anisotropy. The spin pumping is shown to en-
hance spin wave damping, while it has rather weak in�u-
ence on the real parts of eigenfrequencies for the consid-
ered system. The modes propagating in the opposite di-
rections may have signi�cantly di�erent frequencies and
life times, provided they contain some contribution of
surface modes due to hybridization of the bulk and sur-
face waves.
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